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Abstract

Latitudinal and elevational biodiversity gradients fascinate ecologists, and have inspired

dozens of explanations. The geometry of the abiotic environment is sometimes thought to

contribute to these gradients, yet evaluations of geometric explanations are limited by a

fragmented understanding of the diversity patterns they predict. This article presents a

mathematical model that synthesizes multiple pathways by which environmental geometry

can drive diversity gradients. The model characterizes species ranges by their environmen-

tal niches and limits on range sizes, and places those ranges onto the simplified geometries

of a sphere or cone. The model predicts nuanced and realistic species-richness gradients,

including latitudinal diversity gradients with tropical plateaus and mid-latitude inflection

points, and elevational diversity gradients with low-elevation diversity maxima. The model

also illustrates the importance of a mid-environment effect that augments species richness at

locations with intermediate environments. Model predictions match multiple empirical bio-

diversity gradients, depend on ecological traits in a testable fashion, and formally synthesize

elements of several geometric models. Together, these results suggest that previous assess-

ments of geometric hypotheses should be reconsidered, and that environmental geometry

may play a deeper role in driving biodiversity gradients than is currently appreciated.
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Introduction

Biological diversity gradients fascinate ecologists. Global latitudinal diversity gradients

(LDGs) are one of the most pervasive, conspicuous, and ancient characteristics of life (Pi-

anka, 1966; Crame, 2001; Hillebrand, 2004) (Fig. 1A–C). Decades of research have identified

over 30 potential mechanisms that may contribute to these gradients (Lomolino et al., 2010;

Brown, 2014), including ecological (Willig et al., 2003), evolutionary (Jablonski et al., 2006)

and historical (Mittelbach et al., 2007) hypotheses. Elevational diversity gradients (EDGs)

(often, but not always, along mountainsides) are both more numerous and more varied than

LDGs (Fig. 1D–F), and most frequently show either a steady decline in species diversity as

elevation increases, or a mid-elevation diversity peak (Rahbek, 2005). Hypotheses to explain

EDGs largely parallel the explanations proposed for LDGs (McCain and Grytnes, 2010).

One class of hypotheses for diversity gradients suggests that LDGs and EDGs arise in part

as a consequence of the geometry of the abiotic environment. Two such hypotheses inspire

this article. First, in the context of LDGs, Terborgh (1973) and Rosenzweig (1995), among

others, have argued that the tropics are more biologically diverse because they comprise a

greater contiguous area than any other ecoregion. The tropics possess a greater contiguous

area because parallels of latitude are longest at the Equator, because the tropical regions

of the Northern and Southern hemisphere form one contiguous climate belt (while both

temperate and polar regions of the two hemispheres are disjunct), and because the latitudinal

gradient in temperature is non-linear, such that average temperature changes more rapidly

with latitude at high latitudes than at low latitudes. Following Willig et al. (2003), we
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refer to this as the geographic-area hypothesis. Gorelick (2008) provided the first (and, to

the best of our knowledge, only) partial mathematical formalization of the geographic-area

hypothesis, but his model only captured the greater area of the tropics, and ignored the

effects of their contiguity and the non-linear temperature gradient.

In a separate vein, others have suggested that Earth’s geometry promotes LDGs by

constraining the possible placement of species ranges (Colwell and Hurtt, 1994; Willig and

Lyons, 1998; Lees et al., 1999; Colwell and Lees, 2000). This “mid-domain effect” (MDE)

suggests that when species ranges are placed randomly within a bounded domain, the overlap

of species ranges, and hence biological diversity, will be greatest near the domain’s center, and

will decline towards the domain’s edges. With respect to LDGs, Colwell and Hurtt (1994)

suggested that the “northern and southern limits of habitable latitudes ... for a particular

group of organisms” provide the necessary boundaries, leading to greatest species richness in

the tropics. Willig and Lyons (1998) and Lees et al. (1999) mathematically formalized the

MDE on a one-dimensional domain, and mathematical simulations have been used to explore

the MDE on more complicated two- (e.g. Lees et al., 1999; Jetz and Rahbek, 2001; Colwell

et al., 2009) and three- (VanDerWal et al., 2008) dimensional domains, and on domains with

environmental gradients (Connolly, 2005; Rangel and Diniz-Filho, 2005).

Geographic area (Rahbek, 1997) and the MDE (Grytnes and Vetaas, 2002; Colwell et al.,

2004) have also been offered as hypotheses to explain EDGs, although in this context they

often lead to clashing predictions. When area declines with increasing elevation — as it

usually does for published EDGs (McCain, 2007), though area–elevation relationships for

entire mountain ranges may be more complex (Elsen and Tingley, 2015; Bertuzzo et al.,
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2016)1 — the area hypothesis predicts that species richness will decline with increasing

elevation. Gorelick (2008) again provided a mathematical model for the area hypothesis on a

(conical) mountain, and suggested that species diversity should decline either at a constant

or accelerating rate as elevation increases. In contrast, the MDE predicts that biological

diversity will peak at mid-elevations, with symmetric declines in diversity on either side of

the mid-elevation peak (e.g. McCain, 2004). Current support for the geographic area and

MDE hypotheses as drivers of EDGs is mixed (Dunn et al., 2007; McCain and Grytnes,

2010).

While no single mechanism is likely to be responsible for all biodiversity gradients (Col-

well, 2011), the geographic area and MDE hypotheses are useful for understanding how

environmental geometry contributes to these gradients. However, our ability to evaluate the

empirical support for geometric hypotheses is inextricably tied to our understanding of the

predictions that those hypotheses make. Towards this end, the absence of a mathematical

model that synthesizes all pathways by which environmental geometry can influence diver-

sity gradients hampers attempts to assess the empirical support for those hypotheses. For

example, most (though not all) published geometric models for LDGs predict a relationship

between latitude and species richness that is quasi-parabolic and concave down, and peaks

at the Equator (e.g., Willig and Lyons (1998), Lees et al. (1999), Gorelick (2008); Connolly

(2005) provides a notable exception). Yet, many LDGs (e.g., Fig. 1A–C) show a somewhat

different qualitative pattern. In the most recent edition of their text, Lomolino et al. (2010,

p. 670) observed that “rather than exhibiting a continuous decline in species density from the

1McCain (2007) found that area declined with elevation in 26 of 34 published EDGs. However, Elsen
and Tingley (2015) show that surface area declines with increasing elevation in only 32% of mountain ranges
worldwide; mid-elevation peaks in area are more common (39% of mountain ranges).
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Equator to the poles, most taxa exhibit a pattern of relatively high, albeit variable, diversity

in the tropics marked by a rapid decline through the subtropics and much more modest

declines through the higher latitudes.” While this mismatch between data and models is

interesting, it is hard to know whether it constitutes a strike against the idea that Earth’s

geometry contributes strongly to global LDGs, or merely reflects an incomplete expression

of that idea in prevailing models.

This article aims to fill this gap by describing a model for biodiversity gradients driven

solely by the geometry of latitudinal or elevational environmental variation and ecological

limits on species ranges. The model does not merely recapitulate the geographic-area or

MDE hypotheses, but instead it builds a new theory from the ideas embodied in both. To

enable analytical progress, our model considers the highly simplified settings of a sphere for

LDGs and a cone for EDGs (Gorelick, 2008). To be sure, a sphere and cone drastically

simplify the geography of Earth and a mountain, respectively, but they permit solutions and

insight that would otherwise be more challenging. On the sphere, we consider an environment

that changes smoothly between Equatorial and polar extremes (Fig. 2), while on the cone

we assume that the environment varies smoothly from the cone’s base to its apex (Fig. 3).

The model assumes that species ranges are limited by fidelity to an environmental niche

(Brown et al., 1996) and by an upper boundary on their size, and follows others (e.g. Colwell

and Hurtt, 1994) in equating local species richness (i.e., alpha diversity) with the overlap of

species ranges. Importantly, the model assumes that all environments are equally suitable

to life, regardless of latitude or elevation. Thus, the model isolates how the geometry of

environmental variation and ecological limits on species ranges can generate biodiversity
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gradients, without invoking additional biological mechanisms.

As we will show, this model synthesizes many of the essential predictions for biodiversity

gradients made by previous geometric models. However, it also reveals additional fine struc-

ture to these gradients that is not readily apparent in prevailing geometric models. Moreover,

although a formal confrontation with data is outside the scope of this contribution, both the

coarse and fine structure predicted by our model show an intriguing correspondence with

empirical biodiversity gradients. Thus, we suggest that previous evaluations of geometric

hypotheses for diversity gradients may need to be reconsidered, and that environmental ge-

ometry may play a more nuanced role in driving LDGs and EDGs than presently appreciated.

Below, we present the basic model structure and key results. Readers interested in a

qualitative understanding will want to read the overview subsection of the Methods, but can

bypass the latter, more technical subsections. An on-line appendix provides mathematical

derivations, an on-line supplement includes additional results and computer code, and our

technical report (Gross and Snyder-Beattie, 2015) presents a deeper mathematical treatment.

Figures A1–A2 appear in the Appendix, and Figures S1–S5 appear in the supplement.

Methods

Model overview

The model begins with a geometry (sphere or cone) onto which species ranges will be placed.

An environmental template is then constructed by assigning an environment (in this case,
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a single numerical value) to every location on the geometry. Species ranges are formed

by assigning three characteristics to each range: a location where the range originates, an

environmental tolerance, and a maximum radius. Species ranges expand outward from the

range origin until they either encounter an environment that differs from the environment

at the range origin by more than the environmental tolerance, or are further away from the

range origin than the maximum radius. The species richness at a location is then taken

to be the proportion of all species ranges that overlap that location. This algorithm for

constructing species ranges is similar to algorithms devised by Rangel et al. (2007) and

Tomašovỳch et al. (2015), who also constructed species ranges via spatial expansion from a

range origin and fidelity to an environmental niche.

The model thus assumes that species ranges are limited by the species’ environmental

tolerance and an upper limit on the range’s size. The idea that species ranges are limited

by a species’ environmental tolerance is well established (Brown et al., 1996). The upper

bound on a range’s size is a modeling construct intended to capture the many processes that

can limit a species range beyond the availability of suitable environments. For example, in a

more complex world than the simplified geometries considered here, species ranges are apt to

encounter physical (e.g., a land/water interface) or biological (e.g., lack of obligate mutualist

partners) boundaries to further dispersal (Brown et al., 1996). Also, over evolutionary time,

large species ranges will tend to fracture via speciation (Rosenzweig, 1992). Together, these

and other processes impose additional limits on the size of species ranges beyond fidelity to

an environmental niche; the maximum range radius is meant to encompass these processes.

Thus, the model takes the following parameters: the environmental template, and a prob-

8



ability distribution for the triple of range origins, environmental tolerances, and maximum

range sizes across species. We assume that range origins, environmental tolerances, and

maximum range sizes are distributed independently among species, and we also assume that

range origins are distributed uniformly across the geometry. Either of these assumptions

could easily be modified, if (say) environmental tolerance was assumed to differ between

tropical and temperate species, or species were assumed to originate more frequently in the

tropics (e.g. Fischer, 1960; Rohde, 1992; Jablonski et al., 2006). In this article, we focus on

species richness at a given location (i.e., alpha diversity). We present expressions for the

expected alpha diversity as a function of latitude or elevation, although these expressions

often must be solved numerically. The model could also be used to predict species richness

integrated along a band of latitude or elevation (i.e., gamma diversity), although we do not

pursue that aim here.

Latitudinal diversity gradients on the sphere

Let (x, φ) ∈ [−π/2,+π/2]× (−π,+π] be a coordinate system on the unit sphere, where x is

latitude and φ is longitude. Let g(x) ∈ [0, 1] be a function that gives the environment for each

latitude. (The environment is not affected by longitude.) We assume that the environment

is symmetric with respect to the Equator (g(x) = g(−x)) and varies smoothly between

Equatorial and polar extremes. (Technically, g(x) is continuous and strictly monotonic on

x > 0; without loss of generality, we assume g(0) = 0, g(π/2) = 1, and dg/dx > 0 for x > 0.)

Let g−1(·) ≥ 0 be the function that gives the (Northern) latitude for a given environment.
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Let γ ∈ [0, 1] denote a species’ environmental tolerance. A species range that originates

at (xo, φo) can only include locations where the environment differs from g(xo) by no more

than γ. That is, the species range will be a subset of E = {(x, φ) : |g(x)− g(xo)| ≤ γ}, the

collection of all locations within a species’ environmental niche. Larger values of γ yield

wider niches, all else being equal.

Let δ ∈ [0, π] denote a the maximum radius of a species’ range. Let d ((x1, φ1) , (x2, φ2))

denote the great-circle distance between two points. A species range will also be a subset of

D = {(x, φ) : d((xo, φo), (x, φ)) ≤ δ}, the collection of locations that lie within a distance δ

of a range origin.

Given a range origin (xo, φo), an environmental tolerance γ, and a maximum radius δ,

we define the species range as the contiguous subset of the intersection E ∩ D that contains

the range origin (Fig. 2A). We require that the range be contiguous to avoid species ranges

with separate, non-contiguous territories (which would otherwise be possible near the Equa-

tor; Fig. 2B; Tomašovỳch et al. 2015). This definition captures the essential features of our

model while remaining analytically tractable. It is worth noting, however, that the distance

limit is applied “as the crow flies” and thus may pass over intolerable environments; it is

not restricted to paths that pass through only tolerable environments (Fig. 2C). Arguably,

it might be more compelling to require a point in a species range to connect to the range

origin by a path no longer than δ that lies entirely within E , but this definition is mathemat-

ically cumbersome. Spreading dye models (Gotelli and Graves, 1996) may be better able to

accommodate this definition, but such models are beyond the scope of this article.
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To develop ideas, we momentarily assume that all species have the same environmental

tolerance γ and the same maximum radius δ. Let S(x, φ; γ, δ) denote the proportion of these

species found at the point (x, φ). Because species richness in our model does not depend

on longitude, we write S(x; γ, δ), although we emphasize that this is the species richness at

any point on the parallel at x (alpha diversity); it is not the total species richness integrated

over the entire parallel (gamma diversity). Species richness will be the same in Northern

and Southern hemispheres (e.g., S(x; γ, δ) = S(−x; γ, δ)), so without loss of generality we

consider x ≥ 0. It is helpful to write S as the sum of two components S0(x; γ, δ) and

S1(x; γ, δ), which give the species richness resulting from ranges that originate on the same

or opposite side of the Equator as x, respectively.

First consider S0(x; γ, δ). To be concrete, consider species richness at the point (x, φ = 0).

To find S0, we need to integrate the density of species origins f(x, φ) over the region defined

as follows: a species range originating any point in the region would overlap (x, 0).2 This

integral takes the form

S0(x; γ, δ) =

∫ U(x)

L(x)

∫ φy

−φy
f(y, ϕ) dϕ dy (1)

where y and ϕ are variables of integration. The outer integral of eq. 1 is with respect to

latitude, where the bounds of integration 0 ≤ L(x) ≤ U(x) ≤ π/2 give the lower- and upper-

most latitudes of origins whose ranges can reach (x, 0). The inner integral of eq. 1 is with

respect to longitude. For a latitude y ∈ [L(x), U(x)], φy ∈ [0, π] is the eastern-most longitude

2The region of integration may seem unnecessarily convoluted — why not just integrate instead over the
range of a species originating at (x, 0)? While such an approach would work in some cases — including S0

on the sphere and S on the cone — it does not work everywhere, including for S1 on the sphere. For more
details see Gross and Snyder-Beattie (2015).
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from which a range can reach (x, 0). By symmetry, −φy is the corresponding western-most

longitude. In the Appendix, we show that L(x) and U(x) are given by

L(x) = (x− δ) ∨ g−1 ((g(x)− γ) ∨ 0)

U(x) = (x+ δ) ∧ g−1 ((g(x) + γ) ∧ 1) (2)

where a ∨ b = max(a, b) and a ∧ b = min(a, b). For a heuristic understanding of eq. 2,

consider the formula for L(x). The quantity x − δ provides for the maximum radius, and

the quantity g−1 ((g(x)− γ) ∨ 0) provides for the environmental tolerance. L(x) is then the

latitude closest to x that satisfies both criteria. The formula for U(x) is constructed similarly.

Also in the Appendix, we use the formula for the great-circle distance between two points

on the surface of a sphere to show that φy is given by

φy = cos−1

[
−1 ∨ cos δ − sinx sin y

cosx cos y

]
. (3)

See Fig. A1 for an illustration.

To derive S1(x; γ, δ), we again consider the location (x, 0) without loss of generality. We

seek an integral of the form

S1(x; γ, δ) =

∫ L1(x)

U1(x)

∫ φy

−φy
f(y, ϕ) dϕ dy. (4)

In eq. 4, the outer bounds of integration −π/2 ≤ U1(x) ≤ L1(x) ≤ 0 are the parallels

of latitude furthest from and closest to the Equator, respectively, from which a range can
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originate and overlap (x, 0) (Fig. A1). In the Appendix, we show that these bounds are given

by

U1(x) = −g−1(γ) ∨ (x− δ)

L1(x) = −g−1(0 ∨ (g(x)− γ)). (5)

It is not guaranteed that U1(x) < L1(x); if U1(x) ≥ L1(x), then S1 = 0. For y ∈

[U1(x), L1(x)], φy in eq. 4 is again given by eq. 3.

Finally, we relax the assumption that all species have the same environmental tolerances

and range-size limits. We place probability densities f(γ) on γ and f(δ) on δ, and integrate

over these densities to give S(x), the species richness as a function of latitude:

S(x) =

∫ ∫
S(x; γ, δ)f(γ)f(δ) dδ dγ (6)

where S(x; γ, δ) = S0(x; γ, δ) + S1(x; γ, δ).

Elevational diversity gradients on the cone

Following Gorelick (2008) and Colwell and Rangel (2010), we use a right circular cone as a

simplified geometry for an isolated mountain. (See Elsen and Tingley (2015) and Bertuzzo

et al. (2016) for recent evidence that a cone may not capture the elevational distribution of

some terrestrial mountain ranges, especially those shaped by fluvial erosion. Adaptation of

our model to more complex and realistic topographies awaits future work.) A cone with an
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environment that changes smoothly with elevation has a similar topology to a hemisphere

with an environment that changes smoothly with latitude (Fig. 3). Thus, species richness on

the cone can be derived similarly to S0 on the sphere, after suitable changes to the coordinate

system and distance function. The coordinates for a cone are (x, φ) ∈ [0, 1]× [−π,+π], where

x is the position along a base-to-apex transect on the cone’s surface, with x = 0 corresponding

to the base and x = 1 corresponding to the apex. The coordinate φ is the compass direction

with respect to “east”, although in our model species richness depends only on elevation.

In the interest of brevity, we relegate the full model for the cone to the Appendix. In the

main text, we focus on a special case where species ranges are not limited by a maximum size.

Our motivation is that the spatial scale of EDGs (10−1 – 102 km) is likely to be considerably

smaller than the spatial scale of LDGs (103 – 104 km; Rahbek (2005)). On these smaller

spatial scales, processes that limit range size beyond environmental niche fidelity are apt

to be less important in determining species ranges. In this special case, if species origins

are distributed uniformly across the surface of the cone, then the proportion of species with

environmental tolerance γ that overlap a location with elevation x is given by

S(x; γ) = (1− L(x))2 − (1− U(x))2 (7)

where L(x) and U(x) are the lowest and highest elevations from which a range can originate

and reach elevation x (derivation of eq. 7 in the Appendix). L(x) and U(x) can be derived

similarly to eq. 2, giving L(x) = g−1 ((g(x)− γ) ∨ 0) and U(x) = g−1 ((g(x) + γ) ∧ 1). If en-

vironmental tolerances take a distribution f(γ) across species, then we can integrate S(x; γ)
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over this distribution to give S(x), the species richness as a function of elevation:

S(x) =

∫
S(x; γ)f(γ) dγ. (8)

Note that when ranges are not limited by a maximum size, the species richness at a given

location with elevation x (alpha diversity) and total richness along a ring at elevation x

(gamma diversity) are identical. The steepness of the cone only factors into the calculation

of S(x) when ranges are limited by size as well as by environment (Appendix).

Results

In the results that follow, we assume that range origins are uniformly distributed across

the surface of the sphere or cone.3 Thus, resulting biodiversity gradients arise solely from

the interplay between the geometry of the abiotic environment and the ecological limits on

species ranges. We model variation in those ecological limits (the environmental tolerance,

γ, and the maximum radius, δ) by assigning them a Beta distribution with the first shape

parameter (commonly written as α) equal to 1, and the second shape parameter (commonly

β) ≥ 1. (In the case of δ on the sphere, the Beta distribution is placed on δ/π, so that

δ ranges from 0 to π.) When β = 1, this gives a uniform distribution. When β > 1,

the distribution becomes more skewed towards small values, with the probability density

having a mode at 0 and declining monotonically towards larger values (Fig. A2 illustrates).

These skewed distributions generate many small ranges and few large ones, consistent with

3The uniform densities are f(x, φ) = (1/4π) cosx on the sphere and f(x, φ) = (1 − x)/(π sinα) on the
cone, where α is the opening angle of the cone.
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patterns often found in range-size data (Gaston, 1996). The mean of this Beta distribution

is 1/(1 + β).

Latitudinal diversity gradients on the sphere

On a sphere, we use the environmental template g (x) = 1 − cosx to capture latitudinal

variation in temperature and associated aspects of the abiotic environment. (We use 1−cosx

instead of cosx so that dg/dx > 0 for x > 0; but g (x) = cosx yields identical results.)

Figure 4 shows species richness (S(x)) vs. latitude (x) for several different distributions of

environmental tolerance (γ) and maximum range size (δ) among species. Additional results

for other distributions of γ and δ are shown in Figs. S1 – S2. Because species richness for one

hemisphere (Northern or Southern) is the mirror image of the other, only one hemisphere is

shown.

Most coarsely, the model generates a negative correlation between latitude and species

diversity. While this may not seem remarkable, we emphasize that in this model greater

species diversity arises at low latitudes solely as a consequence of the geometry of the en-

vironmental template and the ecological assumptions of environmental niche fidelity and

upper limits on range sizes. Closer inspection of predicted LDGs reveals a variety of finer

structure. We describe these features moving from low to high latitudes. First, there is a

plateau of high and relatively constant species diversity in the tropics. This plateau extends

further into the sub-tropics when species ranges can be large and environmental niches are

broad (Fig. 4A). When the maximum range size is large, species diversity actually increases

16



gradually as one moves from the Equator to nearby low latitudes, leading to a subtle valley

in species diversity around the Equator (Fig. 4A,D). Species richness then declines through

mid-latitudes, with swifter declines in diversity when environmental niches are narrow. This

mid-latitude decline in species diversity is often punctuated by an inflection point, above

which species diversity declines more slowly as latitude increases (e.g., Fig. 4B–F). When

range-size limits are strong and environmental niches are narrow, a second diversity plateau

appears at mid-to-high latitudes (Fig. 4C,E,F)4. When this second plateau exists, though,

it terminates in a steep drop in species diversity near the poles.

The geographic-area hypothesis suggests that Earth’s geometry influences LDGs through

three distinct pathways: low-latitude environments are more abundant, the tropics are com-

pact, and latitudinal temperature gradients are non-linear (Terborgh, 1973; Rosenzweig,

1995). All of these mechanisms would suggest that species diversity should peak at the

Equator. However, in this model, these three mechanisms exist in tension with a fourth:

both Equatorial and polar environments are extreme, while mid-latitude environments oc-

cur in the middle of the environmental spectrum. Thus, mid-latitude environments fall

within the environmental niche of more species than the extreme environments of the poles

or Equator. This mid-environment effect counters the effects of geographic area, and in-

creases species richness at mid-latitudes. This effect has been observed before in simulation

studies (Brayard et al., 2005; Carranza et al., 2008; Tomašovỳch et al., 2015)5 although this

4Indeed, under some parameterizations, a secondary peak in species richness occurs at high latitudes; see
Fig. S1–S2.

5What we refer to as a mid-environment effect, Brayard et al. (2005) and Carranza et al. (2008) refer
to as a MDE along an environmental axis. In this article, we find it cleaner to reserve the term “mid-
domain effect” for a bounded spatial or geographic domain, and use “mid-environment effect” as a term that
references (and pays homage to) the MDE, while distinguishing between bounded geographic domains vs.
dimensions of environmental variation.
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model is the first to integrate it formally with the geographic-area hypothesis.

Figure 5 illustrates how the three elements of the geographic area hypothesis and the mid-

environment effect combine to generate LDGs. Fig. 5A,B shows LDGs with an environment

that changes linearly with latitude (g(x) = |2x/π|), and with an imaginary range-truncating

barrier at the Equator. In this scenario, the greater abundance of low-latitude environments

and the mid-environment effect are the primary mechanisms by which environmental geom-

etry impacts biodiversity.6 Perhaps surprisingly, species richness peaks at mid-latitudes in

these scenarios, suggesting that the effect of greater abundance of low-latitude environments

is weak compared to the mid-environment effect. The mid-environment effect is stronger

when species can tolerate a broad range of environments (Fig. 5A), and is weaker when

environmental niches are narrow (Fig. 5B). Removing the range boundary at the Equator

(but maintaining the linear environment) adds the effect of the compactness of the tropics.

This effect greatly increases species diversity at low latitudes, but LDGs continue to display

a pronounced valley in species richness at the Equator (Fig. 5C,D). Finally, changing to

a non-linear environment introduces the effect of the shallow temperature gradient at the

tropics. This increases species richness at low latitudes even further, thus yielding plateaus

in species richness at the tropics coupled with mid-latitude declines in diversity (Fig. 5E,F).

The occasional secondary plateau in species richness at high latitudes under some scenar-

ios (e.g., Fig. 4E,F) is surprising, and has not been found in previous geometric models. This

high-latitude plateau arises as a balance of several different effects. First, because meridians

6The addition of a range-truncating boundary at the Equator also introduces a MDE that increases
species richness at the pole (the mid-point of the hemisphere). As Fig. 5A,B suggest, this effect is weak, and
it vanishes when the imaginary Equatorial boundary is removed. Thus we do not dwell on it here.
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of longitude converge at higher latitudes, the longitudinal extent of species ranges increases

at an accelerating rate as one moves towards the poles. All else being equal, this tends to

increase diversity at high latitudes. At the same time, however, three mechanisms decrease

diversity at high latitudes: parallels of latitude become shorter (leading to fewer species with

high-latitude niches, if range origins are uniformly distributed), the non-linear environmental

gradient becomes increasingly steep, and the longitudinal extent of a range cannot increase

any further once the range completely encircles the pole (e.g., Fig. 2C). High-latitude diver-

sity plateaus occur when these forces roughly balance. Eventually, however, the latter three

effects predominate, and species diversity drops near the poles. Figure S3 illustrates this

phenomenon.

Elevational diversity gradients on the cone

On the cone, we study an environment that changes linearly with elevation, i.e., g(x) = x.

This is reasonable if the abiotic environment is governed primarily by temperature, which

generally decreases linearly with increasing elevation on mountains (Barry, 2008; McCain

and Grytnes, 2010). Figure 6 shows species diversity vs. elevation for several distributions of

environmental tolerances. As a reminder, these results are for the special case when species

ranges are not limited by a maximum size, and thus wrap completely around the cone. In

all cases, species richness peaks closer to the base of the cone than its apex. These EDGs

arise from a tension between two of the four mechanisms that drive LDGs on a sphere. On

the one hand, mid-elevation environments can be tolerated by the broadest collection of

species, promoting a hump-shaped relationship between species richness and elevation. On
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the other hand, low-elevation environments are more abundant on a cone. Thus, if range

origins are uniformly distributed, then there are more species with low-elevation niches.

The balance between these two forces yields a hump-shaped EDG with diversity peaking

below the gradient’s midpoint. As species’ environmental tolerances become more limiting,

the mid-environment effect becomes less important, and the peak in species richness moves

closer to the cone’s base.

Figure S4 shows additional results for the cone that include a limit on the maximum range

size. In brief, strong limits on range size reduce the importance of the unequal distribution

of environments, leading to a peak in species richness at higher elevations.

Discussion

These results show how the interplay among environmental geometry, niche fidelity and upper

limits on range size can yield a surprisingly rich variety of latitudinal and elevational bio-

diversity gradients. These predicted diversity gradients synthesize elements of earlier work,

and identify some additional fine structure that previous geometric models have not antici-

pated. Moreover, model exploration suggests how the features of these predicted gradients

are modulated by ecological traits, and thus provides grist for future empirical evaluation.

These insights sharpen our ability to resolve the impacts of the many drivers — both ge-

ometric and otherwise — that combine to generate the diversity gradients that typify life

(Colwell, 2011).

On a sphere, this model predicts latitudinal diversity gradients (LDGs) with more com-
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plex structure than the quasi-parabolic relationship between latitude and species richness

predicted by other analytic geometric models (Willig and Lyons, 1998; Lees et al., 1999;

Gorelick, 2008). Prominent features of this structure include broad plateaus in diversity at

low latitudes, subtle Equatorial valleys in species richness when environmental niches are

narrow and other limits on range size are weak, mid-latitude inflections where the loss of

diversity slows with increasing latitude, and occasional secondary plateaus in species rich-

ness at mid-to-high latitudes, especially when environmental niches are narrow. Although

a formal confrontation with data awaits future work, the concordance between several of

these predictions and documented LDGs is striking (e.g., Fig.1A–C). Indeed, Lomolino et al.

(2010)’s textbook characterization of LDGs (quoted in the Introduction) matches the qual-

itative predictions of our model nearly to a tee, and suggests environmental niches on the

narrow side of those explored here (e.g., Fig. 4D–F).

Some of the more surprising predictions of this model for LDGs are occasional Equato-

rial diversity valleys and high-latitude diversity plateaus. In the model, Equatorial valleys

in species richness arise from a tension between a mid-environment effect, which promotes

greater species richness at mid-latitudes, and the three elements of the geographic-area hy-

pothesis (Terborgh, 1973), each of which promotes greater species richness at the Equator.

(Fig. S5 provides a visual explanation of this phenomenon.) Comparable Equatorial diversity

valleys were also found in the “geophyletic” (i.e., geographic and evolutionary) model of Bra-
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yard et al. (2005), and arose from a somewhat similar mechanism.7 8 Brayard et al. (2005)’s

model was inspired by LDGs of Atlantic plantkic foraminifera, a taxon for which diversity

gradually increases from the Equator to the subtropics before declining sharply beyond ap-

proximately 30◦ N (Rutherford et al., 1999; Yasuhara et al., 2012) (Fig. 1A). Equatorial

diversity valleys are well documented for oceanic taxa; Tittensor et al. (2010) observed that

most oceanic taxa peak in richness between 20◦ – 40◦ latitude. Moreover, Brayard et al.

(2005) observed that Equatorial valleys in diversity are prominent for a host of marine and

terrestrial taxa, and questioned the common practice of dismissing these valleys as uninter-

esting artifacts. Our model adds theoretical support to Brayard et al. (2005)’s suggestion

that Equatorial diversity valleys may be an under-explored subject worthy of deeper scrutiny

and investigation.

The high-latitude diversity plateau predicted by our model has (to the best of our knowl-

edge) not been anticipated by geometric models, perhaps because no prior model captures

polar geometry. However, empirical evidence for a secondary high-latitude plateau in species

richness is hard to find. Roy et al. (1998) found a secondary peak in marine copepod di-

versity between 50◦ – 60◦ N in the eastern Pacific (Fig. 1C), although they speculated that

this was “at least partly an artifact” of the particular geography of the Gulf of Alaska and

the Bering Sea. If high-latitude diversity plateaus exist, they are most likely to be found for

taxa with partially or wholly circumpolar ranges (Fig. S3).

7Brayard et al. (2005) state that their Equatorial diversity valley arises “from the combination of two
distinct geometric mid-domain effects: geographic and thermal.” (p. 184) Their thermal MDE is equivalent
to our mid-environment effect. However, Brayard et al. (2005) considered the bounded spatial domain of the
Atlantic basin (and thus also found a geographic MDE), while our spherical spatial domain has no equivalent
to a spatial MDE.

8An Equatorial diversity valley can also be found in the temperature-limited range-spreading model of
Tomašovỳch et al. (2015) (see their Figs. 1D,F), although they focus on latitudinal gradients in range size,
not LDGs.
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With respect to global LDGs, one important contrast between our model and the MDE

hypothesis is that the MDE requires a bounded domain, while our model does not. Although

the MDE’s logic for genuinely bounded domains may be compelling, its reliance on a bound-

ary leaves it wanting as a purely geometric explanation for Earth’s LDG. Colwell and Hurtt

(1994)’s original argument that the “northern and southern limits of habitable latitudes”

constitute a domain boundary has obvious appeal, as many taxa are of course constrained to

habitat below a certain latitude. However, designating polar regions as boundaries implicitly

excludes polar species whose ranges occupy habitat above a certain latitude. Clearly, any

explanation for global LDGs that excludes polar taxa is unsatisfying. A purely geometric

hypothesis for global LDGs requires an understanding of how diversity gradients arise on a

sphere without hard domain boundaries (sensu Colwell and Hurtt (1994)), which our model

provides.

On a cone, our model predicts a hump-shaped relationship between species richness and

elevation, with a peak in richness closer to the base of the cone than its apex. While the

large majority of published EDGs display a hump-shaped relationship (e.g. Rahbek, 2005;

McCain and Grytnes, 2010), few published surveys have examined the precise location of the

diversity peak. McCain (2009) has perhaps come closest by offering a categorization scheme

for EDGs that includes low-elevation plateaus with a mid-elevation peak. While our results

do not suggest a low-elevation plateau per se, her characterization and our model predictions

both emphasize a hump-shaped EDG with greater diversity at the gradient’s base than at

its apex. Our informal survey of the literature suggests that low-elevation peaks in species

richness are common, and can be found for such taxa as birds (Terborgh, 1977, Fig. 1D),
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ants (Bishop et al., 2014, Fig. 1E), ferns (Kluge et al., 2006, Fig. 1F), and fungi (Miyamoto

et al., 2014). If this pattern withstands deeper scrutiny, our model provides one mechanism

that could explain it.

Importantly, the cone model is only concerned with species ranges that originate on

the cone itself. This may be appropriate for some scenarios, such as terrestrial species

on oceanic islands. In other scenarios, such as for a terrestrial EDG, the environment at

the gradient’s base may be similar to the environment of the surrounding landscape. In

these cases, species with ranges that originate on the surrounding lowlands should encroach

partway up the elevational gradient. Thus, we would expect species richness at low elevations

to exceed the richness predicted by our model, for the same reason that the compactness

of the tropics increases diversity at low latitudes on the sphere. We have not yet found

a satisfying way to incorporate this encroachment effect in our model. Nevertheless, this

thinking suggests that species richness should peak at higher elevations when the base of the

elevational gradient forms an ecological barrier, and at lower elevations when the base blends

gradually into the surrounding landscape (Grytnes and Vetaas (2002) provide a similar result

with an MDE model). In the latter case, biodiversity may even plateau at lower elevations

(McCain, 2009), or decline monotonically with increasing elevation if species encroachment

from the surrounding landscape is strong enough.

During the review process, an interesting discussion arose regarding whether our method

for constructing species ranges implicitly assumes that extreme-environment specialists pos-

sess fundamental environmental niches that extend beyond the range of existing environ-

mental variation. Clearly, our range-construction algorithm results in narrower realized
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environmental niches when ranges originate near an environmental extreme, as opposed to

originating at an intermediate environment, all else being equal (see Feeley and Silman

(2010) for an example of a similar empirical pattern with tropical plants). However, the

mathematics and predictions of our model do not depend on whether the smaller realized

environmental niches of extreme-environment specialists are interpreted as truncations of

larger fundamental niches, or as expressions of smaller fundamental environmental niches.

This distinction would be more important if the model were used to forecast how biodiversity

gradients respond to environmental change (Colwell et al., 2008; Feeley and Silman, 2010).

To sum up, while environmental geometry is unlikely to be the sole driver of diversity

gradients, the results here suggest that the even simple geometries can generate nuanced

gradients in species richness when combined with basic ecological limits on species ranges.

Although our comparison of model predictions with data is far from rigorous, the striking

concordance between model predictions and prevailing empirical patterns suggests that the

role of geometry may be deeper and more pervasive than previously appreciated. At the

very least, our results demonstrate how several pathways by which environmental geometry

can impact species diversity may combine to drive fine structure in diversity gradients,

and suggest relationships between this structure and ecological traits that may be profitably

subjected to empirical testing. The logic of this model could also be adapted to more complex

geometries, especially more realistic maps of Earth’s continental geography and/or mountain

topography, although the mathematics would require a computational approach. The model

could also be adapted to less conventional diversity gradients, including the microbiome of the

human skin (Costello et al., 2012) or gastrointestinal tract (Stearns et al., 2011), bathymetric
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(depth) gradients in the ocean (Pineda and Caswell, 1998), or even hypothetical diversity

gradients on candidate planets for extraterrestrial life (Snyder-Beattie, 2013).
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Appendix: Proofs and mathematical details

Derivation of L(x), U(x), and φy for the sphere

To find L(x) and U(x), consider a species range originating at (y > 0, 0) with maximum

radius δ and environmental tolerance γ. This species will have a range that overlaps (x > 0, 0)

if and only if both of the following conditions are true. First, d((x, 0), (y, 0)) = |x− y| ≤ δ,

that is,

(x− δ) ∨ 0 ≤ y ≤ (x+ δ) ∧ xmax. (9)

where xmax is the maximum value of x (=π/2 for the sphere). Second, the environment at

(x, 0) must fall within the species’ environmental tolerance, that is,

g(x)− γ ≤ g(y) ≤ g(x) + γ

or

g−1((g(x)− γ) ∨ 0) ≤ y ≤ g−1((g(x) + γ) ∧ 1). (10)

Combining inequalities (9)–(10) yields

{(x− δ) ∨ 0} ∨ g−1((g(x)− γ) ∨ 0) ≤ y ≤ {(x+ δ) ∧ xmax} ∧ g−1((g(x) + γ) ∧ 1).

Because g−1(0) = 0 and g−1(1) = xmax, the above can be written more simply as

(x− δ) ∨ g−1((g(x)− γ) ∨ 0) ≤ y ≤ (x+ δ) ∧ g−1((g(x) + γ) ∧ 1).
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The left- and right-hand sides of the above give L(x) and U(x), respectively. Figure A1

shows L(x) and U(x) on the surface of a sphere.

To find φy, consider a parallel of latitude at y ∈ [L(x), U(x)]. Because the environment is

the same everywhere along a parallel, only the maximum radius is needed to find φy. Thus,

we need to find φy such that d((x, 0), (y, φy)) = δ. The great-circle distance between any two

points on the unit sphere is given by the geodetic form of the spherical law of cosines:

d((x1, φ1), (x2, φ2)) = cos−1 (sinx1 sinx2 + cosx1 cosx2 cos (φ1 − φ2)) . (11)

Solving d((x, 0), (y, φy)) = δ gives the expression in eq. 3, where the quantity in square

brackets evaluates to −1 (and thus φy = π) if the entire parallel at y lies within a distance

δ of (x, 0).

Derivation of L1(x) and U1(x)

To find L1(x) and U1(x), consider a species range centered at (y < 0, 0) with maximum radius

δ and environmental tolerance γ. This species will have a range that overlaps (x > 0, 0) if

and only if each of the following three conditions are true.

1. d((x, 0), (y, 0)) = |x− y| ≤ δ. Because y < x, this is equivalent to

x− δ ≤ y. (12)
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2. |g(y)− g(x)| ≤ γ. By the same logic as the derivation of L(x) and U(x), this gives

g−1((g(x)− γ) ∨ 0) ≤ −y ≤ g−1((g(x) + γ) ∧ 1)

or

−g−1((g(x) + γ) ∧ 1) ≤ y ≤ −g−1((g(x)− γ) ∨ 0). (13)

3. |g(y)− g(0)| ≤ γ. Assuming g(0) = 0 gives

−g−1(γ ∧ 1) ≤ y. (14)

The third condition above is needed to ensure that the range can extend over the Equator.

Because γ ≤ g(x) + γ, inequality (14) above implies the left-hand inequality of (13).

Combining inequalities (12)–(14) yields

(x− δ) ∨ −g−1(γ ∧ 1) ≤ y ≤ −g−1((g(x)− γ) ∨ 0).

The left- and right-hand sides of the above give U1(x) and L1(x), respectively. Figure A1

shows U1(x) and L1(x) on the surface of a sphere.

Full model for species richness on the surface of a cone

Let α ∈ (0, π/2] give the opening angle of the cone, such that α = 0 gives an infinitely steep

cone and α = π/2 gives a disc. Let g(x) ∈ [0, 1] define the environment for each elevation,
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and assume that the environment varies smoothly and monotonically as elevation changes,

that is, g(x) is continuous with dg/dx > 0. Without loss of generality, we assume g(0) = 0

and g(1) = 1.

Distances between two points on the cone’s surface are calculated by “unrolling” the

cone. That is, to measure the distance from any point on the eastern “edge” (technically,

the generatrix) of the cone (φ = 0) to any other point on the cone, imagine cutting the cone

along a line running from the apex to the westernmost point on the cone’s base. The cone can

then be “unrolled” to form a sector of a circle with radius 1 and total area 2π sinα. On the

unrolled cone, it is helpful to use the coordinate system (x, ϕ) ∈ [0, 1]× [−π sinα,+π sinα],

where x is the distance from the base of the cone, and ϕ is the compass direction with respect

to “east”. A location (x, φ) on the original cone corresponds to a location (x, ϕ = φ sinα) on

the unrolled cone. The distance between a point with ϕ = 0 and any other point is simply

the Euclidean distance on the unrolled cone.

If we consider just those species with environmental tolerance γ and distance constraint δ,

the proportion of ranges that overlap any point with elevation x will be given by an integral

comparable to eq. 1 for the sphere, that is:

S(x; γ, δ) =

∫ U(x)

L(x)

∫ ϕy

−ϕy

f(y,$) d$ dy. (15)

Here, the outer integral is with respect to elevation, and the inner integral is with respect to

the angular position on the unrolled cone. The limits of integration L(x) and U(x) are the

lowest (closest to the base) and highest (closest to the apex) elevations of centers of ranges
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that will reach the point (x, 0). These limits of integration are identical to the limits in eq. 2.

For an elevation y ∈ [L(x), U(x)], ϕy ∈ [0, π sinα] is the maximum positive angle along an

arc at elevation y from which a range can reach (x, 0). Using the law of cosines, it can be

shown that ϕy is

ϕy = (π sinα) ∧ cos−1

[
−1 ∨ (1− x)2 + (1− y)2 − δ2

2(1− x)(1− y)

]
. (16)

Plugging eq. 2 and eq. 16 into eq. 15 gives an expression for S(x; γ, δ) on the cone. As

with the sphere, we will assume that species centers are distributed uniformly on the cone’s

surface, corresponding to the probability density f(x, ϕ) = (1− x)/(π sinα). Plugging this

density into eq. 15 gives

S(x; γ, δ) =

∫ U(x)

L(x)

∫ ϕy

−ϕy

1− y
π sinα

d$ dy

=

∫ U(x)

L(x)

2(1− y)ϕy
π sinα

dy (17)

Finally, we can integrate S(x; γ, δ) over probability densities for γ and δ (eq. 6) to give S(x),

the proportion of all species ranges that overlap a point at elevation x.

In the main text, when the distance limit is relaxed, we have ϕy = π sinα. Thus, eq. 17

becomes

S(x; γ) =

∫ U(x)

L(x)

2(1− y) dy,

which evaluates to eq. 7 of the main text.
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Beta probability distributions

Figure A2 shows several Beta probability distributions, each of which has the first shape

parameter (commonly denoted as α) equal to 1. These are the distributions that are used

for γ in Figure 6 of the main text.
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Figure legends

Figure 1. Examples of latitudinal (A–C) and elevational (D–F) biodiversity gradients. All

vertical axes show local species richness (alpha diversity). A: Planktic foraminifera at

sites in the North Atlantic, as calculated by Yasuhara et al. (2012). B: Bat species in

equally sized grid cells in the New World (Willig and Selcer, 1989) (published data do

not distinguish between N vs. S latitude). C: Marine copepod species along the coast

of the Americas, based on overlap of species ranges (Roy et al., 1998). D: Bird species

in samples of 300 mist-netted individuals at several elevations in the Peruvian Andes,

as reported by Terborgh (1977), after Rahbek (1995). E: Ant species richness from

pitfall traps at sites in southern Africa in the 2009 wet and dry seasons (Bishop et al.,

2014). F: Species of ferns and their allies sampled exhaustively at several elevations in

Costa Rica (different plot symbols show two separate transects) (Kluge et al., 2006).

Smooth fits in panels A and B are loess curves. Detailed data descriptions appear in

the Supplement.

Figure 2. Species ranges on the sphere. Color corresponds to the environmental template

g(x) = 1 − cosx, where x is latitude. Solid black lines show range boundaries, and

points show range origins. A: Three species ranges. Range 1 encounters an intolera-

ble environment on its northern edge, and encounters its maximum radius elsewhere.

Range 2 encounters an intolerable environment on both its northern and southern

boundaries. Range 3 overlaps a pole, and its boundary is determined entirely by its

maximum radius. B: Species ranges must be contiguous. The area outlined in red

lies within the range’s maximum radius (shown by the dashed line) and environmental
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niche, but is not part of the range because it is separated from the range origin by

intolerable habitat at the Equator. C: The distance limit is measured “as the crow

flies”. The dashed line shows the maximum radius. The smaller circle surrounding the

pole lies outside the species’ environmental tolerance, and is not part of the range. The

point indicated by an “x” lies in the species range, even though all paths that connect

it to the range origin while passing through only tolerable habitat are longer than the

maximum radius.

Figure 3. Species ranges on the cone. Color corresponds to the environmental template

g(x) = x, where x is elevation. Solid black lines show the boundaries of two species

ranges, and points show the origins of those ranges. Range 1 is limited by the environ-

ment on the upper and lower extents of its range, while its angular extent around the

cone is determined by its maximum radius. Range 2 is limited only by its environmental

tolerance, and thus wraps completely around the cone.

Figure 4. Species richness (S(x)) vs. latitude (x) for different distributions of the maximum

range radius (δ, columns) and the environmental tolerance (γ, rows). Distributions for

δ and γ are Beta distributions with first shape parameter equal to 1, and are indicated

by their mean values (see text). Note the difference in vertical scales among panels.

Figure 5. Environmental geometry impacts latitudinal diversity gradients (LDGs) through

four different pathways. Top row (A–B): Species richness S(x) vs. latitude (x) on

a sphere with a linear environmental gradient and a range-truncating barrier at the

Equator. These LDGs include the effects of a greater abundance of tropical environ-

ments, and a mid-environment effect. Middle row (C–D): LDGs on a sphere with a
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linear environmental gradient, and with species ranges that can cross the Equator.

These LDGs add the effect of the compactness of the tropics to the LDGs in panels

A–B. Bottom row (E–F): LDGs on a sphere with a non-linear (cosine) environmental

gradient, and with species ranges that can cross the Equator. These LDGs add the

effect of the non-linear environmental gradient to the LDGs in panels C–D. Left col-

umn: the average environmental tolerance across species is γ̄ = 1/4. Right column:

γ̄ = 1/20. The average maximum radius is δ̄ = π/4 throughout. Grayscale bars de-

pict the environmental gradient. Dashed lines in panels C–F show S0(x), the species

richness when species ranges cannot cross the Equator. Panels E and F correspond to

Fig. 4A and 4D, respectively.

Figure 6. Species richness (S(x)) vs. elevation (x) on a cone, where only the environmental

tolerance limits species ranges. Environmental tolerances (γ) take a Beta distribution

with means γ̄ = 1/2, 1/3, or 1/10.

Figure A1. Schematic showing the region of integration for S0 (eq. 1) and S1 (eq. 4) on

the sphere. The black dot shows (x, 0), the point at which species richness is to be

calculated. The latitudinal extent of the region containing (x, 0) is bounded by L(x)

and U(x), the lowest and upper-most latitudes of origins of ranges that can reach

the parallel at x (eq. 2). The longitudindal extent of the region along a parallel at

y ∈ [L(x), U(x)] is given by [−φy, φy], where φy is the eastern-most longitude of an

origin along the parallel at y that can reach (x, 0) (eq. 3). The region below the

Equator is the region of origins of ranges that can reach (x, 0) by crossing over the

Equator. The latitudinal extent of this region is given by U1(x) and L1(x) (eq. 5), and
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the logitudinal extent along any parallel within this range is given by [−φy, φy]. This

particular figure shows x = 15◦ N, γ = 0.0303 (chosen so L(x) = 5◦ N), and δ = 30◦.

Colors correspond to the environment g(x) = 1− cosx.

Figure A2. Three Beta probability distributions, each with the first shape parameter (com-

monly written as α) equal to 1. Solid, dashed and dotted lines show the second shape

parameter (commonly written as β) equal to 1, 2 and 9, respectively. In each case, the

mean of the distribution is 1/(1 + β).
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