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Abstract

Scientific research requires taking risks, as the most cautious approaches are unlikely to

lead to the most rapid progress. Yet, much funded scientific research plays it safe and fund-

ing agencies bemoan the difficulty of attracting high-risk, high-return research projects. Why

don’t the incentives for scientific discovery adequately impel researchers toward such proj-

ects? Here, we adapt an economic contracting model to explore how the unobservability of

risk and effort discourages risky research. The model considers a hidden-action problem, in

which the scientific community must reward discoveries in a way that encourages effort and

risk-taking while simultaneously protecting researchers’ livelihoods against the vicissitudes

of scientific chance. Its challenge when doing so is that incentives to motivate effort clash

with incentives to motivate risk-taking, because a failed project may be evidence of a risky

undertaking but could also be the result of simple sloth. As a result, the incentives needed to

encourage effort actively discourage risk-taking. Scientists respond by working on safe proj-

ects that generate evidence of effort but that don’t move science forward as rapidly as riskier

projects would. A social planner who prizes scientific productivity above researchers’ well-

being could remedy the problem by rewarding major discoveries richly enough to induce

high-risk research, but in doing so would expose scientists to a degree of livelihood risk that

ultimately leaves them worse off. Because the scientific community is approximately self-

governing and constructs its own reward schedule, the incentives that researchers are will-

ing to impose on themselves are inadequate to motivate the scientific risks that would best

expedite scientific progress.

Introduction

Scientific inquiry is a risky business. Every experiment, every analysis, every collaboration

entails embarking on a path whose destination is uncertain and whose terminus could be a

dead end [1]. Not all projects are equally risky, however. In choosing what to work on, scien-

tists have the latitude to embrace risk or to shy away from it. High risk can bring high return;

some of the biggest scientific advances arise from risky projects, and credit accrues to
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investigators accordingly [2,3]. Excessive caution hampers scientific progress, and so scientists,

funders of science, and the public all have an interest in encouraging researchers to pursue

risky projects. Yet, formal and anecdotal evidence alike suggest that investigators shy away

from taking the big risks that may generate the most productive science [4,5]. Even efforts to

solicit risky research proposals have met with middling success [5,6]. These observations beg

the question: Why don’t the incentive structures in science impel researchers to pursue suffi-

ciently high-risk research?

In this paper, we use a mathematical model to study how scientists’ willingness to pursue

risky projects is affected by the non-observability of their actions. By “the non-observability of

their actions,” we mean that scientists are not directly rewarded for their effort or for the

degree of risk they assume in their research. Instead, investigators are rewarded for the scien-

tific advances that their research yields. However, the uncertain nature of science means that a

scientist’s productivity is only stochastically related to the effort they expend and the scientific

risk they take on. Thus, in deciding how hard to work and how much scientific risk to

embrace, an investigator must weigh the potential for discoveries and acclaim against the

chance that their project will fail, leaving them with little to show for their efforts. Here, we

aim to understand how the unobservable, or hidden, nature of effort and risk shape investiga-

tors’ research strategies and the incentive structures within which they work. Of course,

observability is not the only factor that affects investigators’ risk preferences. Franzoni and col-

leagues [5] have recently reviewed a range of explanations for why science funders and scien-

tists who seek funding may be averse to scientific risk. Elsewhere, we and others have

considered how the ex ante nature of grant peer review can deter investigators from proposing

projects that their colleagues would consider risky [7–9].

The claim that effort and risk-taking are unobservable to those who ultimately determine

how an investigator’s work is rewarded—namely, to the scientific community—is the central

premise of our model. While the unobservability of risk-taking and effort is a foundational

tenet of the economics of science [10,11], it nevertheless benefits from further justification in

the present context. Of course, scientists’ actions, especially their effort, are observable to those

around them—their bosses, their colleagues, their family, and their friends. But these are not

the people who ultimately determine whether scientists get the university tenure-track job or

are honored by a professional society. Instead, career success accrues based on how the scien-

tific community evaluates scientists’ contributions. Thus, it is the scientific community that

serves as the ultimate arbiter of investigators’ professional success, and this community does

not have the means (because of its physical dispersion) or perhaps even the interest to monitor

investigators’ effort. Indeed, to a first approximation, scientists’ careers rise and fall based on

their CVs, and CVs list only scholarly outputs, not hours worked or risky undertakings gone

bust. (At first glance, it may seem that scientists’ supervisors determine professional rewards

and could monitor effort if they were so inclined. Yet, in academic science, supervisors primar-

ily reward researchers based on the esteem in which those researchers’ contributions are held

by scientific community. Thus, supervisors act in response to the community’s judgment, not

separately from it.) This set of circumstances, and thus our model, pertain most directly to

investigators who work individually or in small teams on projects that may take a few months

or a few years, or at most a single career. They do not describe, and thus our model does not

capture, large infrastructure projects such as space exploration or high-energy physics where

the need to coordinate huge teams makes effort plainly visible to the scientific community in

which those teams operate.

Formally, we study investigators’ risk-taking behavior using the economic framework of a

hidden-action problem. Hidden-action, or moral hazard, problems are most often used to

study the tensions that arise when a “principal” writes a contract to hire an “agent” to work on
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the principal’s behalf [12,13]. In our setup, individual investigators are the agents while the sci-

entific community collectively plays the role of the principal. We can treat the scientific com-

munity as the principal because academic science is a self-organized pursuit, in which

scientists operate within institutions—hiring norms, systems for funding, tenure standards,

etc.—that they have designed for themselves and that endure only with their continued bless-

ing. While this is undoubtedly a simplification, it hews close enough to reality to expose funda-

mental tensions at work in motivating scientists to do risky research. (When necessary to

avoid ambiguity, we refer to scientists acting collectively as the “scientific community” and

individual scientists acting in their own best interest as “scientists,” “investigators,” or

“researchers.”) The “contract” that the scientific community establishes is not an actual con-

tract, of course, but instead represents the traditions that the community establishes for

rewarding investigators for their discoveries. In other words, we study how much prestige the

scientific community assigns to a publication in (say) PLOS Biology as opposed to a publication

in a competing journal, or to a failed research attempt that generates no publication at all.

In establishing these traditions, the scientific community must collectively solve the follow-

ing problem. The community receives resources—jobs, funding, prestige, etc.—from the pub-

lic to support the scientific endeavor in exchange for the knowledge that the community

produces [14]. The community seeks to distribute these resources among its members in what-

ever manner its members favor most, but in doing so, it is constrained in the following ways.

First, because only scientists’ discoveries (e.g., publications) are observable, the community’s

tradition for distributing rewards can only be based on the scientific advances that researchers

produce. Second, the community is not free to bestow unlimited rewards on its members.

Instead, the total volume of rewards is linked to the public’s aggregate support of science.

Third, while individual researchers are not disposed to embrace or to shy away from scientific

risk for its own sake, researchers are averse to putting their livelihoods at risk in the usual way

that economic actors are assumed to be averse to livelihood risk.

To sum, we model how a scientific community establishes a tradition for rewarding discov-

eries that motivates investigators to work hard and to take scientific risks while also protecting

researchers’ livelihoods from the vicissitudes of scientific chance. For the sake of comparison,

we also solve the same contracting problem from the perspective of a (fictitious) social planner

who cares most about optimizing scientific progress and who only cares secondarily about

investigators’ preferences. Our goal is to understand how the hidden nature of researchers’

actions affects the scientific community’s ability to motivate researchers to take scientific risks,

if it does at so all, and to understand any consequences for the aggregate productivity of the

scientific community.

The most closely related modeling work to this analysis seems to be Manso’s study of the

tension between risk-taking and effort in the context of executive compensation [15]. The sci-

entific community’s problem also resembles an optimal taxation problem, in the sense that the

community redistributes the fruits of scientific progress in a way that maximizes researchers’

individual well-being while preserving the incentive for investigators to make important dis-

coveries [16,17]. Franzoni and colleagues [5] provide a recent qualitative analysis of the rea-

sons why investigators often eschew risky research.

Mathematical model

Our mathematical framework builds from the economic theory of hidden-action models

[12,13]. While a familiarity with hidden-action models is not necessary to understand the

setup, Box 1 provides a very brief introduction to hidden-action models for curious readers.

Ch. 4 of [16] provides a more thorough introduction.
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Box 1. Hidden-action models

Hidden-action, or moral-hazard, models are tools for analyzing tensions that arise when

one party—typically dubbed the “principal”—hires a second party—the “agent”—to do

costly work on the principal’s behalf. To do so, the principal seeks to propose a compen-

sation scheme (the contract) that the agent will find agreeable and that will motivate the

agent to put forth work. The principal’s ability to write this contract efficiently is hin-

dered by two key tensions. The first tension is an information asymmetry: The effort

that the agent invests in their work is known only to the agent, and, consequently, the

principal cannot compensate the agent directly for their effort. Instead, the agent’s effort

yields an output. The output is publicly observable and can be contracted upon, but the

agent’s effort only stochastically determines their output. (Typically, greater effort yields

a stochastically larger output.) The second tension arises because a stochastically deter-

mined output creates risk, and the principal and the agent are presumed to have differ-

ent risk tolerances. Usually, the principal is thought to be more willing to bear risk than

the agent because the principal might enter into multiple contracts with several agents at

once, while the agent only enters into a single contract. Alternatively, the principal

might have a limited ability to penalize the agent for a low output, which creates a similar

tension.

Principal-agent models also assume that the principal has the bargaining power. In other

words, the principal is free to propose a contract that specifies the agent’s compensation

(their “wages”) as a function of the agent’s output. The agent then chooses whether or

not to accept the contract, and if they accept it, the agent also decides privately how

much effort to expend.

The principal’s problem is then to find the contract that yields the best outcome for the

principal, under the constraints that the contract cannot pay the agent directly for their

effort and that the agent is not obligated to accept the contract. The classical result is that

the principal’s preferred contract leaves the principal worse off and elicits less effort

from the agent compared to the contract that the principal could propose if the agent’s

effort were directly observable or if the principal and agent were equally tolerant of risk.

Hidden-action settings are routine in everyday life. Classic examples include insurance

contracts, managerial contracts, and contracts for specialized labor. The setting that we

analyze in this paper differs from the standard hidden-action setting in two key ways.

First, the principal in our case is the scientific community, and, thus, the principal’s

interests are aligned with the agents’ (researchers’) interests. Second, the researchers’

action has two distinct components: how hard they work (their effort) and the degree of

scientific risk they take on. Both components of the action affect the researcher’s output,

but only effort is costly to the researcher. Our setting aligns with the classic hidden-

action setup because the scientific community (by virtue of its size) can tolerate more

risk than individual researchers, and because the community seeks a contract, or tradi-

tion, for rewarding the researchers for an output (scientific productivity) that is stochas-

tically determined by the researchers’ actions.
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Our model envisions a scientific workforce that consists of a unit mass of investigators. To

get off the ground, we make two substantial assumptions. First, we assume that all scientists are

alike. Second, we consider a one-shot setting in which investigators attempt a single study

instead of building a portfolio of complementary studies. Clearly, both of these assumptions are

unrealistic. Their purpose here is to allow us to focus on the key strategic dilemma that the com-

munity faces when attempting to motivate both risk-taking and hard work. Relaxing either or

both of these assumptions complicates the community’s task in interesting ways that would be

ripe for subsequent analysis. We examine both assumptions further in the Discussion.

When an investigator pursues a study, they must decide both how risky of a project to pur-

sue and how much effort to invest. Let r represent a study’s scientific risk and let e represent an

investigator’s effort. We will let both r and e take values in [0,1], with larger values of r and e
corresponding to greater risk and more effort, respectively. Together, the risk–effort pair (r, e)
forms an investigator’s action. We assume that there is no direct cost to scientific risk, in the

sense that risky projects are no more or less onerous than safer ones. (In reality, it may be that

riskier projects are also more onerous, which, if true, would exacerbate the tension studied

here.) By contrast, effort is costly to investigators, such that an investigator who expends effort

e incurs a disutility cost c(e), with c(0) = 0, c0>0, and c00>0. The convexity of c can be motivated

by assuming that researchers obtain decreasing marginal returns to leisure, a standard assump-

tion in labor economics [18].

Each study generates an outcome that has a scientific value v�0. The distribution of v
depends on the investigator’s action. Some studies yield unpublishable outcomes, in which

case they contribute nothing to science and have value v = 0. Publishable outcomes have

strictly positive value (v>0), with larger values of v corresponding to more valuable outcomes.

We assume that the values of published outcomes are continuously distributed on v>0. Thus,

for any action, the corresponding distribution of v includes a probability mass at v = 0 and a

probability density on v>0. Because the distribution of v has both discrete and continuous

components, it is most naturally represented by the cumulative distribution function (cdf)

F(v) = Pr{V�v}, where F(0) is the probability of an unpublishable outcome. Let F(v;r,e) denote

the cdf of v corresponding to the action (r,e).
Because we describe the distribution of v by its cdf, we use

R
g(v) F(dv;r,e) to denote the

expectation of a function g(v) when the distribution of v is given by F(v;r,e). Accordingly, let s
(r,e) =

R
v F(dv;r,e) denote the expected scientific productivity of an investigator who takes

action (r,e). Because we have assumed that all investigators are alike, s(r,e) also gives the aggre-

gate per capita productivity of the scientific community when every investigator takes action

(r,e). We assume that the scientific community is large enough that the stochasticity in the

community’s aggregate productivity is negligible. Let ðr̂; êÞ be the action that maximizes scien-

tific productivity, and let r̂ðeÞ be the level of risk-taking that maximizes scientific productivity

for a given level of effort e. We assume that ðr̂; êÞ is unique and that r̂ðeÞ is unique for any

value of e.
We now specify how the distribution of v depends on the investigator’s action. Consider

risk first. While there are many facets of scientific risk [1,19,20], here, we assume that scientific

risk has the following properties. First, an increase in risk increases the probability that an

investigator will unluckily generate an unpublishable outcome [21] and will have nothing to

show for their efforts (Fig 1A). Because scientific risk has no natural units, we might as well

equate a project’s scientific risk with the probability that a study generates an unpublishable

outcome when an investigator gives full effort, that is, F(0; r, e = 1) = r. Second, an increase in

risk increases the conditional expectation of an outcome’s scientific value given that it is pub-

lishable. Third, we assume that s(r,e) is strictly concave in r for any value of e.

PLOS BIOLOGY Rationalizing risk aversion in science
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Now consider effort. Zero effort (e = 0) guarantees zero science (v = 0), that is, F(0; r, e = 0) = 1.

Second, for any scientific risk and any scientific value v, increasing effort strictly increases the the

chance of obtaining an outcome at least as valuable as v (Fig 1B). In other words, increasing effort

shifts the graph of F(v) downwards and to the right. (Put differently, increasing effort increases v
in the sense of first-order stochastic dominance.) This implies that s(r,e) increases in effort for any

value of r.
Finally, we require a few technical regularity conditions on F(v;r,e) that are described more

fully in S1 Appendix. The most substantive of these is a monotone likelihood ratio property

(MLRP) with respect to both risk r and effort e. The MLRP, with respect to risk, states that

among publishable outcomes, a higher-valued publication provides more evidence of greater

risk than a lower-valued publication provides. With respect to effort, the MLRP states that

among all studies (publishable or not), a larger value of v provides at least as much evidence of

greater effort than a smaller value of v provides.

We now turn to the problem that the scientific community faces in establishing its tradition

for rewarding investigators for their discoveries. Society provides resources to the scientific

community in return for scientists’ collective progress. These resources include all forms of

compensation, such as income, jobs, prestige, etc. We assume that the total resources are

directly linked to the aggregate scientific productivity [14] and write the per capita resources

(the community’s resource “budget”) as B(s), with B(0) = 0 and B0>0. The resource budget

represents a longstanding arrangement between the public and the scientific community that

emerges over many rounds of the one-shot process that we consider.

The scientific community distributes these resources among its members based on the dis-

coveries that researchers generate. Let w(v)�0 denote the resource reward (or “wages”) that a

scientist receives in return for a scientific outcome of value v. We call w(�) the community’s

“contract,” and we assume that w(�) is differentiable for v>0. A scientist’s utility increases by

u(w)�0 if they receive wage w. We assume that u(0) = 0, u0>0, and u00<0, so that scientists are

strictly risk averse with respect to their wages. A scientist who chooses action (r,e) while facing

Fig 1. Risk and effort have differing effects on the distribution of a project’s value. Each panel shows the cumulative distribution

function F(v;r,e) of a project’s value v. Values at v = 0 correspond to the probability of generating an unpublishable outcome. (A)

Increasing scientific risk increases the probability of getting an unpublishable outcome but also increases the expected value of

publishable outcomes. (B) Increasing effort decreases the probability of getting an unpublishable outcome and increases the probability

of publishing an outcome with a large value.

https://doi.org/10.1371/journal.pbio.3002750.g001
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contract w(�) obtains the payoff

pðr; e;wð�ÞÞ ¼
Z

uðwðvÞÞ Fðdv; r; eÞ � cðeÞ: ð1Þ

A contract w(�) is said to implement the action (r,e) if an investigator facing w(�) maximizes

their payoff by choosing that action.

Two comments are in order before proceeding. First, it is useful to recall that the research-

ers’ “payoff” is merely a mathematically convenient device for capturing preferences [22]. In

other words, to say that one action has a higher payoff than another is simply a way of stating

that the action with the higher payoff is preferred to the action with a lower payoff. Second, by

associating the researchers’ payoff with the professional returns that the scientific outcome

brings, we follow the argument that scientists, in addition to following their own curiosities,

want to do work that is rewarded [23].

The scientific community’s problem is to find a contract w(�) that maximizes its members’

payoff while implementing an action that generates enough aggregate scientific productivity to

justify the public’s investment. In other words, the community’s problem is

max
r;e;wð�Þ

pðr; e;wð�ÞÞ ð2Þ

subject to the following constraints. First, we assume that the contract must reward high-value

science at least as handsomely as it rewards lower-value science. That is, the contract must sat-

isfy the monotonicity constraint

wð0Þ � limv#0 wðvÞ

w0ðvÞ � 0 for v > 0:
ðMCÞ

Second, because the total rewards cannot exceed the resource budget, the contract and the

action it implements must satisfy the budget constraint

Z

wðvÞ Fðdv; r; eÞ � Bðsðr; eÞÞ: ðBCÞ

Third, the contract must implement the action. That is, the contract must satisfy the incentive

constraint

ðr; eÞ 2 argmax
r0 ;e0

pðr0; e0;wð�ÞÞ: ðICÞ

Both the effort and risk components of the IC optimize over a continuum of possible actions

and thus entail an infinite number of constraints. We follow the usual procedure of analyzing

instead the relaxed problem in which both components of the IC are replaced by the corre-

sponding first-order conditions

@

@r
p r; e;w �ð Þð Þ ¼ 0 ðRCÞ

and

@

@e
p r; e;w �ð Þð Þ ¼ 0: ðECÞ

We call these the risk constraint (RC) and the effort constraint (EC), respectively. While cau-

tions apply to using a first-order condition [24–26], we assume that the second-order
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conditions needed to justify the use of the RC and EC hold for any w(�) that satisfies the MC.

Write the action implemented by the community’s optimal contract as ð~r;~eÞ.
Hidden-action problems also typically involve a participation constraint. Suppose that an

investigator may leave science to pursue an outside option that provides the reservation payoff

πR�0. The participation constraint (PC) would then read π(r,e,w(�))�πR, assuming that inves-

tigators participate at indifference. To ensure that there are at least some contracts that make it

worthwhile for investigators to participate in science, we assume that there is at least one action

for which an investigator’s payoff under the “soft-money” contract w(v) = vB(s)/s satisfies the

PC. Under this assumption, the PC does not factor into the scientific community’s problem.

We consider two benchmark settings for comparison. The first is the hypothetical full-

information scenario in which the investigators’ actions are observable. In this scenario, the

community can mandate that investigators must take a particular action to receive the rewards

offered by the contract. The full-information solution solves (2) subject to only the MC and

BC. The second benchmark is the problem that would be faced by a hypothetical social planner

whose primary objective is to maximize scientific productivity. This planner’s problem is

max
r;e;wð�Þ

sðr; eÞ ð3Þ

subject to the MC, BC, RC, and EC. (The PC may also constrain the social planner. When it

does, the social planner finds the contract that maximizes scientific productivity while just pro-

viding the investigators with a payoff of πR. Because the social planner’s problem is only a

benchmark and not the primary focus of this article, we do not explore the consequences of

the PC for the social planner any further.) We will see that the social planner may have several

contracts available that implement the productivity-maximizing action ðr̂; êÞ. In these cases,

we assume that the social planner seeks the contract that maximizes the investigators’ payoff

while implementing ðr̂; êÞ.

Analysis

Full-information benchmark

To begin, consider the full-information benchmark in which investigators’ actions are observ-

able. In this case, the community is best off paying everyone who takes the contracted action

the same wage regardless of the scientific output that their research yields. The intuition here

is clear: If actions are observable, then the community bears the scientific risk and insures

investigators fully, because an investigator who takes the mandated action but produces a

weak or unpublishable result has manifestly just been unlucky.

With full insurance, the payoff-maximizing effort (and, thus, the effort that the community

demands of its members) will depend on the details of B(�), s(�,�), and c(�) and will not neces-

sarily maximize scientific productivity. However, regardless of the optimal effort level, the

community will mandate the level of scientific risk-taking that maximizes scientific productiv-

ity for the optimal level of effort. In other words, under full information, scientific risk-taking

maximizes scientific productivity for the level of effort that is best for the community.

The same logic prevails in an intermediate scenario in which only risk-taking is hidden but

effort is observable. In this scenario, the community can still fully insure the investigators, and,

thus, the community settles on the same contract as the full-information benchmark. Conse-

quently, scientific risk-taking is not distorted when effort is observable, regardless of whether

scientific risk is observable.
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Second-best outcomes when researchers’ actions are hidden

We now return to the setting when both scientific risk-taking and effort are hidden. Ideally,

we would like to identify the precise conditions under which scientific risk-taking is or is not

distorted away from its productivity-maximizing level. Unfortunately, such a result eludes us.

In the absence of a sharp result, we proceed in two complementary directions. First, we show

that scientific risk-taking is distorted downwards in the special case when effort scales the

probability that an outcome is publishable. Second, we present a numerical example that sug-

gests that risk-taking will still be distorted downwards in the more complex and realistic case

in which effort affects both the probability that an outcome is publishable and the distribution

of v for publishable outcomes. We conclude by arguing why we expect the intuition in the spe-

cial case to carry over to the richer case.

Special case: Effort scales the probability of publication. Here, we impose the additional

restriction that effort only affects the probability of publication. More specifically, we assume

that the probability of generating a publishable outcome scales linearly with e and thus equals

e(1-r). Let F(v;r) give the cdf of v under full effort. Then, the cdf of v under any effort in this

case is then given by

Fðv; r; eÞ ¼ 1 � eþ eFðv; rÞ: ð4Þ

In this special case, the community’s tradition always distorts risk-taking downward from its

productivity-maximizing level, that is, ~r < r̂ð~eÞ as long as F(v;r) meets a few additional mild

technical conditions. A mathematical proof appears in S1 Appendix.

To sketch the intuition behind the result, we appeal to a standard result from moral-hazard

theory, which is that the optimal contract for implementing a particular action rewards out-

comes in proportion to the evidence or “good news” that those outcomes provide for that

action [12,13]. When effort is hidden, researchers cannot be fully insured against the risk of a

nonpublishable outcome; if they were, they would have no incentive to work hard. To create

an incentive for hard work, the community’s tradition must, at a minimum, furnish more

handsome rewards to researchers who publish than to researchers who don’t. This reward pre-

mium for publication forces researchers to bear some livelihood risk, decreasing their payoff.

While a reward premium for publication is necessary to motivate effort, it simultaneously

discourages scientific risk-taking by penalizing researchers who generate unpublishable

results. The community must counteract the risk-discouraging effects of a publication pre-

mium by rewarding higher-value publications more handsomely, thus restoring an incentive

to pursue risky projects. Yet, the uneven reward tradition needed to motivate risk-taking cre-

ates its own drag on researchers’ payoff by exposing them to additional livelihood risk. Because

of this drag, the community settles for a more egalitarian tradition that balances partial protec-

tion from livelihood risk against the reduced productivity of the more conservative science

that this tradition implements.

Incentives for risk-taking and effort will always be in tension at v = 0, because an unpublish-

able result provides “good news” about an investigator’s risk-taking but “bad news” about their

effort. In the special case of Eq 4, this tension at v = 0 is the entire interaction between motivat-

ing effort and motivating risk-taking, and, thus, a tradition that encourages effort necessarily

discourages risk-taking. This guarantees that under Eq 4, the community’s preferred tradition

must distort risk-taking downwards from its productivity-maximizing optimum.

To illustrate with a numerical example, suppose that publishable outcomes have an expo-

nentially distributed scientific value with mean r. Thus, scientific productivity s(r,e) = er(1−r),
and the productivity-maximizing action is ðr̂ ¼ 1=2; ê ¼ 1Þ. Indeed, the productivity-maxi-

mizing scientific risk for any effort is r̂ðeÞ ¼ 1=2. Suppose that an investigator’s disutility cost
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of effort is given by c(e) = 0.1e2 and their utility derived from wages is given by uðwÞ ¼
ffiffiffiffi
w
p

.

Finally, assume that the community’s resource budget is linear in the aggregate scientific pro-

ductivity, B(s) = s.
The community’s preferred tradition and the social planner’s benchmark for this numerical

example are illustrated in Fig 2. Note that the community’s problem (Eq 2) can be rewritten as

max
r;e

max
wð�Þ

pðr; e;wð�ÞÞ; ð5Þ

thus decomposing the community’s problem into 2 subproblems: an “inner” maximization that

finds the best contract for each action, and an “outer” maximization that finds the action with the

best payoff. Fig 2A shows the investigators’ payoff at the solution to the inner maximization of Eq

5 for each action; that is, it shows the highest payoff that the investigators can receive for each

action. The solution to the outer maximization in Eq 5 is shown by the red diamond in Fig 2A.

This action and the corresponding reward tradition (Fig 2B) solve the community’s problem.

In this example, a social planner can institute a contract that impels researchers to take the

productivity-maximizing action. The social planner does this by solving the inner maximiza-

tion of Eq 5 for ðr̂; êÞ, subject to the same constraints that the community faces. The commu-

nity’s reward tradition distributes rewards more evenly among its members than the social

planner’s contract (Fig 2B). The community’s tradition reduces scientific productivity relative

to the social planner’s contract (sð~r;~eÞ � 0:203 for the community’s tradition versus sðr̂; êÞ ¼
0:25 for the social planner’s contract), but it leaves the investigators better off.

Although it is not shown in Fig 2, the full-information benchmark in this example would

mandate that each investigator take the productivity-maximizing action and pay each investi-

gator who does so a wage equal to the per capita scientific productivity (w = 0.25). This would

give the investigators a greater payoff (π = 0.4) than they would receive under any hidden-

action scenario.

Fig 2. The scientific community’s tradition decreases both risk-taking and effort away from their productivity-maximizing actions while rewarding

scientific contributions more evenly. This figure shows the solution to the numerical example described in the text when F(v; r, e) is given by Eq 4. (A) The

investigators’ payoff at the optimal tradition, or contract, for implementing each possible action. The red diamond shows the action that yields the largest

possible payoff and, hence, the community’s preferred tradition. The black diamond shows the payoff that the investigators would receive from a social planner

who seeks first to maximize scientific productivity and secondly to optimize investigators’ welfare. (B) The reward tradition established by the community (red

curve) and the contract that a social planner would favor (black). The community’s preferred tradition distributes rewards more evenly among investigators

than the the social planner’s contract does. The code to generate this figure can be found in https://zenodo.org/records/12532039.

https://doi.org/10.1371/journal.pbio.3002750.g002
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Richer case: Effort affects both the probability of publication and the distribution of

v. The additional structure of Eq 4 is sufficient to guarantee that scientific risk-taking is dis-

torted downward from its productivity-maximizing level. However, Eq 4 is not necessary for

risk-taking to be distorted downward, and, indeed, we expect that the same intuition is likely

to prevail in the more complex and realistic case when effort can also affect the distribution

of v for publishable outcomes. To illustrate, consider a variation of the previous numerical

example. Now, suppose that the probability of generating a publishable outcome is given by
ffiffi
e
p
ð1 � rÞ and outcomes that are publishable have an exponentially distributed scientific

value with mean r
ffiffi
e
p

. Thus, as before, scientific productivity s(r,e) equals er(1−r), and the pro-

ductivity-maximizing action remains ðr̂ ¼ 1=2; ê ¼ 1Þ. As before, we continue to assume

cðeÞ ¼ 0:1e2; uðwÞ ¼
ffiffiffiffi
w
p

, and B(s) = s. Fig 3 shows that in this more complex case the com-

munity’s optimal contract continues to distort both scientific risk-taking and effort down-

wards from their productivity-maximizing values.

The results in Fig 3 suggest that the community will continue to adopt a reward tradition

that encourages researchers to play it safe even when effort has more complex effects on the

distribution of outcomes that investigators’ research generates. We expect that this is a broadly

general result that will apply for most reasonable choices of F(v;r,e). The intuition here is the

same as before: Motivating researchers to expend costly effort requires creating a reward pre-

mium for publishable outcomes, but this premium explicitly discourages risk-taking. We can’t

rule out the possibility that risk-taking will not be distorted in the more general model, because

it is conceivable that “good news” about effort and risk-taking might be strongly enough

aligned for publishable outcomes (v>0) to counteract the tension at v = 0, thereby making it

less costly to motivate effort when investigators pursue riskier-than-optimal science. Although

this scenario seems far-fetched to us in practice, nothing in the mathematical structure of the

model seems to rule out the possibility. (Note that our lack of a sharp result in the absence of

Eq 4 is only a statement of our own inability to obtain such a result. We haven’t yet found a

counter-example under which risk-taking is not distorted downwards, so we may have just

failed to find an appropriate proof.)

Fig 3. The scientific community’s tradition decreases risk-taking and effort away from their productivity-maximizing actions in a richer model in which

effort also affects the probability distribution of publishable results. This figure is structured identically to Fig 2 but pertains to the case when effort affects

both the probability of generating a publishable outcome and the distribution of v for publishable outcomes. See the text for model details. The code to generate

this figure can be found in https://zenodo.org/records/12532039.

https://doi.org/10.1371/journal.pbio.3002750.g003
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Discussion

On the face of it, scientists as a group seem to face dilemma that they are unable to solve. On

the one hand, risky research generates the groundbreaking advances that expand our knowl-

edge most rapidly. On the other hand, scientists seem either unable or unwilling to devise

institutions that motivate investigators to embrace the scientific risks that would lead to the

most rapid progress [5]. Our analysis here suggests that this state of affairs can be explained at

least in part by the interaction between two key structural elements in science: the unobserva-

bility of risk and effort on the one hand, and the self-organized nature of science on the other.

If either of these elements were reversed—if either risk and effort could be verifiably docu-

mented, or if science was governed by a hypothetical social planner with the authority to allo-

cate prestige unilaterally—scientists could either motivate themselves or be motivated by the

social planner to implement the productivity-maximizing scientific risk. The mechanisms

would be quite different, however; in the former case, scientists would be rewarded directly for

their risk and effort choices, while in the latter case, the social planner would heap prestige on

investigators who generate the most groundbreaking discoveries while reducing the prestige

awarded for more incremental advances.

But neither option is available. We have argued earlier about the hidden nature of risk and

effort, ruling out the possibility of awarding prestige based on either. We have said less about

why a social planner does not emerge to organize (academic) science. For one, a social planner

cannot emerge because science is a specialized pursuit, and assessing the scientific value of dis-

coveries requires a close knowledge of the field. Thus, a hypothetical social planner would be

hamstrung by being forced to rely on the guidance of the investigators to determine how to

value outcomes, and as such would be no more than a conduit for the investigators’ collective

judgements [27]. In other words, they wouldn’t be a planner at all.

Why doesn’t the scientific community simply adopt the scheme that a social planner would

advocate? They don’t because the social planner’s scheme leaves the scientists worse off,

despite optimizing scientific progress. The social planner’s scheme demoralizes the investiga-

tors because it places the investigators at too great a risk of having little to show for their efforts

if their scientific risk does not pay off. The scientific community can do better by weakening,

though not eliminating, the disparity in prestige awarded for groundbreaking versus incre-

mental outcomes, thus preserving the incentive for investigators to take on some scientific risk

while also protecting their livelihoods if the scientific risk doesn’t pan out.

The tension we study here helps to explain some features of the scientific ecosystem,

which might otherwise seem perverse. Consider scientific funding. Many funding bodies

have programs dedicated to funding risky research. Yet, those funders also ask investigators

to report the research outputs generated by prior funding awards. While few would ques-

tion that a researcher’s past productivity provides useful information to reviewers evaluat-

ing new proposals, it is still worth nothing that funders discourage risk-taking when they

make prior productivity a de facto requirement for subsequent funding. On its face, this

practice seems to send a mixed message to investigators. Yet, such a mixed message may be

a reasonable compromise for a community that can only verify a researcher’s outputs. In

other words, while the scientific community may be perpetually frustrated by its inability to

impel investigators to take bigger risks, this frustration is not necessarily evidence of poor

institutional design; it may instead be an unavoidable consequence of information asymme-

tries inherent in the scientific endeavor.

In some corners of science, recent efforts to reform the publication process such as Regis-

tered Reports [28,29] and venues for publishing null results may decouple scientific risk from

livelihood risk, thus making high-risk research more attractive to investigators. It will be
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exciting to see how these nontraditional publication pathways affect scientific activity as

researchers build experience with them. Registered Reports, in which researchers can obtain

in-principle acceptance of publication pending faithful execution of a peer-reviewed study

design, provide an especially interesting case. While Registered Reports may protect research-

ers against the risk of obtaining a null result, the need to obtain peers’ blessing at the design

stage may simultaneously disfavor studies that are risky in another sense, that sense being an

investigators’ willingness to leverage their private scientific beliefs when those beliefs depart

from the mainstream [9]. This dynamic hints at the likely complex interactions between differ-

ent facets of scientific risk. It is also worth noting that these nontraditional publication path-

ways may de-risk some forms of scientific activity, such as surveys, clinical trials, and

replication studies, more effectively than other types of work, such as mathematical or theoret-

ical studies.

Our analysis makes a number of simplifications, each of which provide an opportunity

for further research. Perhaps most substantively, we have assumed that all investigators are

alike. In science, researchers differ in many ways that affect how they design their research

programs, including their abilities and their predisposition to take scientific risks [30].

These differences are only privately known to the individual investigators, at least initially.

In contracting theory, private differences among agents further complicate the principal’s

task through the phenomenon of “adverse selection,” in which the principal’s inability to

know agents’ type results in additional distortions away from efficient outcomes. Moreover,

the effects of adverse selection compound when investigators also make hidden-action deci-

sions [16]. Without further study, we can only speculate about how these interactions may

play out in science, although it seems likely that adverse selection complicates the task of

designing a reward scheme that motivates researchers to pursue the type of research at

which they excel.

Second, our assumption that researchers are alike makes it easy to determine the scientific

community’s objective, because the contract that is best for one researcher is also best for all.

In reality, different types of researchers will prefer different reward schemes. Understanding

how the community resolves these differences requires an additional understanding of the

internal politics of science that eludes the authors.

Our model also simplifies the community’s task by considering only a one-off setting. In

reality, of course, researchers build their careers and their reputation through a series of proj-

ects, thus allowing investigators to build a research portfolio that may include both risky

endeavors and safer bets. Further, the act of doing science is not as simple as our model envi-

sions. In reality, projects evolve, and investigators routinely make operational decisions

throughout a project’s lifetime that steer it toward its conclusion. Perhaps one of the most

helpful skills in science is the ability to make the proverbial lemonade from lemons, that is, to

generate useful science from a risky effort gone bust. Finally, in the long run, a researcher’s

output begins to yield information about her abilities relative to those of other investigators,

introducing an interaction between one’s career stage and the adverse selection mentioned

above that only complicates matters further [31]. All these realities intrude on the simple set-

ting we have analyzed here in ways that will require future work to unravel.

These caveats notwithstanding, the dynamic that we have explored here is inescapable. In

deciding how to reward discoveries, the scientific community must contend with the fact that

reward schemes that motivate effort inherently discourage scientific risk-taking and vice versa.

Because the community must motivate both effort and scientific risk-taking, and because effort

is costly to investigators, the community inevitably establishes a tradition that encourages

more conservative science than would be optimal for maximizing scientific progress, even

when risky research is no more onerous than safer lines of inquiry.
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