
Quantifying secondary pest outbreaks in cotton

and their monetary cost with causal inference

statistics

Kevin Gross1,3 and Jay A. Rosenheim2

1Biomathematics Program, North Carolina State University, Raleigh NC 27695

2Department of Entomology, University of California, Davis, CA 95616

3Corresponding author, email: kevin gross@ncsu.edu

1



Abstract

Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted2

target pest species triggers subsequent outbreaks of other pest species. Although secondary

pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is4

made difficult by the challenges of performing randomized experiments at suitable scales.

Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by6

early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp.

(primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do8

so by analyzing pest-control management practices for 969 cotton fields spanning 9 years

and 11 private ranches. Our analysis uses statistical methods to draw formal causal infer-10

ences from non-experimental data that have become popular in public health and economics,

but which are not yet widely known in ecology or agriculture. We find that, in fields that12

received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% (s.e. 4.4%)

of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the14

early-season insecticide application for Lygus. In 2010 US dollars, this equates to an ad-

ditional US$6.0 (s.e. US$1.3) per acre in management costs. To the extent that secondary16

pest outbreaks may be driven by eliminating pests’ natural enemies, these figures place a

lower bound on the monetary value of ecosystem services provided by native communities18

of arthropod predators and parasitoids in this agricultural system.

20

Keywords: Causal inference, cotton, ecosystem services, indirect effects, integrated pest

management, potential outcomes, secondary pest outbreak.22
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Introduction

Secondary pest outbreaks, in which the use of a pesticide to reduce densities of an unwanted24

target pest species triggers subsequent outbreaks of other pest species, are a well-known

phenomenon in agriculture (Ripper, 1956; Hardin et al., 1995; Dutcher, 2007). Several26

mechanisms can drive secondary pest outbreaks, including reduction of natural enemies

that suppress densities of non-target pests, physiological changes in the plant or non-target28

species (hormoligosis), and reductions in competing arthropod species (Ripper, 1956; White,

1984; Hardin et al., 1995). Secondary pest outbreaks can be detrimental to the welfare of30

the farmer, as they may reduce profit by reducing yield and by necessitating costly addi-

tional pesticide applications (Horton et al., 2005; Dutcher, 2007). Secondary pest outbreaks32

are also of interest from the perspective of ‘ecosystem services’, because quantifying the

loss in profit attributable to secondary pest outbreaks may arguably provide a lower bound34

on the monetary value of the regulation of economically injurious pest species provided by

communities of natural enemies.36

While the existence of secondary pest outbreaks is uncontroversial, rigorous documenta-

tion of secondary pest outbreaks is difficult (Hardin et al., 1995; Dutcher, 2007). Experimen-38

tal demonstration of secondary pest outbreaks is often stymied by considerations of scale,

because well-replicated, controlled experiments are often (but not always) infeasible at the40

spatial and temporal scales at which the ecological mechanisms driving or preventing sec-

ondary pest outbreaks operate. Consequently, most evidence for secondary pest outbreaks42

comes from so-called observational data collected outside an experimental framework. With

traditional analyses, observational data do not provide the conclusive evidence for causation44

that experimental data allow.

This article investigates secondary pest outbreaks elicited by management for the plant46

bug Lygus spp. in cotton grown in the San Joaquin Valley of California, USA. Lygus is a

key pest of cotton in California and throughout the southwestern US (Leigh et al, 1988;48
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Leigh & Goodell, 1996). Management of Lygus in cotton is thought to provide a prime

candidate for secondary pest outbreaks, because cotton harbors a rich community of arthro-50

pod herbivores and natural enemies, and because, until very recently, only non-selective,

broad-spectrum pesticides have been available for Lygus control (Rao et al., 2003; Dutcher,52

2007). Indeed, some of the most convincing experimental demonstrations of secondary pest

outbreaks that do exist come from early studies of Lygus control in California cotton, where54

repeated and heavy applications of broad-spectrum insecticides to control Lygus elicited

outbreaks of armyworms and other lepidopteran larvae (Falcon et al., 1968, 1971; Eveleens56

et al., 1973). More recently, informal observations have suggested suggest that, under con-

temporary management practices, early-season insecticide applications to control Lygus can58

also trigger secondary pest outbreaks of other herbivorous arthropods such as spider mites

(Tetranychus spp.) (University of California, 1996).60

Here, we investigate secondary pest outbreaks in California cotton with an ‘ecoinfor-

matics’ approach. With the generous cooperation of four professional pest-control advisors62

(PCAs), we have assembled data detailing management practices in cotton fields operated

by 11 different ranches from 1997–2008. We have assembled these data in hopes that the64

breadth of management strategies that they span will allow us to measure agriculturally

meaningful effects at scales that are pertinent to contemporary agriculture. We analyze66

these data for secondary pest outbreaks using statistical methods for causal inference from

observational data that have been developed in the context of public health and economics.68

To our knowledge, these causal inference methods have not yet penetrated the ecological or

agricultural literature (Plowright et al., 2008).70

Thus, this paper has two primary goals. Our first goal is to determine if secondary

pest outbreaks are caused by the application of contemporary broad-spectrum insecticides72

for Lygus pests in California cotton, and if so, to quantify the monetary cost of managing

those outbreaks. Our second goal is to introduce statistical methods for causal inference74
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from observational data that are not yet widely known among ecologists. The remainder

of this paper is structured as follows. We first introduce the Lygus–cotton system in more76

depth, and provide details about the data that we have assembled. We then provide a brief

introduction to causal-inference statistics, and offer citations for further reading. We then78

use these causal-inference methods to estimate the effect of early-season insecticide treat-

ment for Lygus on the number and cost of late-season insecticide applications for non-Lygus80

pests. Readers uninterested in the causal-inference framework may bypass the mathematical

sections without loss.82

Lygus in cotton

Introduction to the system84

Cotton pest management in California’s San Joaquin Valley is predicated upon the judicious

and sparing use of pesticides so as to maximize the pest management services contributed86

by an abundant and diverse community of natural enemies (University of California, 1996).

The primary threats to cotton production due to herbivorous arthropods change over the88

course of the growing season. Lygus spp., predominantly L. hesperus Knight (Hemiptera:

Miridae) but also occasionally L. elisus Van Duzee (Hemiptera: Miridae), damages cotton by90

feeding on young flower buds, potentially eliciting their abscission. This damage is of most

concern early during the reproductive phase of cotton’s growth (late May through June),92

when cotton’s ability to compensate for loss of flower buds appears to be particularly weak

(unpublished data; see also Musser et al. (2009) for a parallel result). Because this window of94

crop sensitivity to Lygus is relatively brief, a single application of insecticides often suffices

to suppress Lygus below damaging levels until the plant attains a developmental stage with96

enhanced capacity to compensate for loss of flower buds. L. hesperus and L. elisus are

usually not distinguished in pest management.98
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Later during the growing season, other pests can become more significant. Spider mites

(Tetranychus spp. Dufour [Acari: Tetranychidae]) are especially important during the hottest100

months (July, August), when their populations can grow explosively. Armyworms (mostly

Spodoptera exigua [Hübner] [Lepidoptera: Noctuidae]) and other lepidopteran larvae are102

also more likely to emerge as pests late in the growing season (July, August). Aphids (Aphis

gossypii Glover [Hemiptera: Aphididae]) are primarily a concern late during the growing104

season as well (September-October), because their populations grow most rapidly under

cooler fall temperatures and because their excreta (‘honeydew’) can contaminate cotton lint,106

which is exposed once mature cotton fruits (‘bolls’) start to open as harvest approaches.

Spider mite, armyworm, and cotton aphid populations are potentially regulated by a108

diverse community of natural enemies in cotton fields. Generalist predators, including

Orius spp. Wolff (Hemiptera: Anthocoridae), Geocoris spp. Fallen (Hemiptera: Lygaei-110

dae), Nabis spp. Latreille (Hemiptera: Nabidae), Zelus spp. Fabr. (Hemiptera: Reduvi-

idae), a complex of ladybeetles (family Coccinellidae), and a complex of common green112

lacewings (family Chrysopidae) are consumers of each of these herbivores. In addition,

each herbivore has a complex of more specialized predatory and parasitic exploiters: spider114

mites are attacked by specialist predators, including Frankliniella occidentalis (Pergande)

(Thysanoptera: Thripidae), Scolothrips sexmaculatus (Pergande) (Thysanoptera: Thripi-116

dae), and a complex of predatory mites (family Phytoseiidae); armyworms are attacked by a

complex of hymenopteran parasitoids; and aphids are attacked by the parasitoid Lysiphlebus118

testaceipes (Cresson) (Hymenoptera: Braconidae) and a complex of predatory hover flies

(family Syrphidae) and midges (family Cecidomyiidae) (van den Bosch & Hagen, 1966; Uni-120

versity of California, 1996). The use of broad-spectrum insecticides to control early-season

Lygus populations may impose mortality on any or all members of this diverse community122

of natural enemies.
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Data base assembly124

We compiled data from four PCAs who manage cotton for private ranchers in California’s San

Joaquin Valley. Each PCA provided data for 1–4 unique ranches and 5–10 years. Overall,126

our data span 11 ranches, and for each ranch we have data for some subset of the years from

1997–2008.128

Our data consist of scouts’ reports, pesticide applications, including all insecticides and

acaricides, targets for each pesticide application, and yields for multiple fields at each ranch.130

(Here and throughout, we use the term ‘field’ to refer to a single year’s planting on a physical

parcel of land, not as the land itself.) Scouting data typically include weekly or biweekly132

counts of the average number of Lygus individuals captured in multiple standard sweep-

net samples (50 sweeps). Some PCAs also recorded square shed. Pests other than Lygus134

were not routinely sampled. We calculated the monetary cost of each late-season pesticide

application for secondary pests by adding the price of the pesticide and standard application136

costs, using cost data from early 2010. Detailed methods for our cost calculations appear in

the appendix.138

Because our data do not include secondary pest densities, we use the number of late-

season pesticide applications for secondary pests as a proxy for secondary pest outbreaks.140

Instead of attempting to estimate the effects of broad-spectrum insecticide applications

throughout the growing season, we simplified the analysis by partitioning the growing sea-142

son into ‘early’ and ‘late’ phases, using July 1 as the first day of the late-growing season.

We chose July 1 as our separation point because cotton is most vulnerable to yield loss144

from Lygus herbivory from planting through June, and thus it is during this period when

farmers may need to suppress Lygus populations aggressively. Thus, we will specifically ask146

how pre-July 1 insecticide application for Lygus affects the number of post-July 1 pesticide

applications for non-Lygus pests.148

Late in our study period, some fields were treated with the Lygus-selective insecticide
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flonicamid, which suppresses populations of Lygus and cotton aphids, but has few effects on150

beneficial insects. Because flonicamid is not expected to impact native arthropod communi-

ties as severely as broad-spectrum insecticides, fields treated with flonicamid were excluded152

from the analysis.

Causal inference for observational data154

In this section, we introduce the statistical methods for drawing formal causal inferences from

observational data. Causal inference methods have become popular in scientific disciplines156

that study human welfare, namely public health (Little & Rubin, 2000) and economics

(Imbens & Wooldridge, 2009; Gangl, 2010), where it is unfeasible, unethical, or impractical158

to subject human subjects to randomized, controlled experiments. Because causal inference

methods are relatively unknown in the natural sciences, we provide a basic introduction160

to the underlying logic here. Of course, causal inference methodology extends far beyond

the material presented below. Readers interested in a deeper exposition of causal inference162

methods may consult Imbens & Wooldridge (2009) and Gangl (2010); we find the former to

be particularly readable yet comprehensive.164

Potential outcomes and treatment effects

We adopt the perspective of defining causal effects via potential outcomes (also referred166

to as ‘counterfactuals’; Rubin (2005)), and consider only the simple case of estimating a

causal effect with a binary treatments and a single outcome. This scenario is illustrated in168

table 1. Consider estimating the causal effect of applying an early-season broad-spectrum

insecticide for Lygus (the ‘treatment’) on the number of late-season insecticide applications170

for secondary pests (the ‘response’). In notation, let A ∈ {0, 1} denotes the treatment, with

A = 1 indicating early-season insecticide application for Lygus and A = 0 indicating no172

such insecticide application. Let Y denote the response. Now envision the value of Y that
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would result if a field receives treatment A = 0, and the value that would result if the field174

receives treatment A = 1. Denote these so-called potential outcomes as Y ?(0) and Y ?(1),

respectively. Because each field receives only one treatment, we are not able to observe both176

Y ?(0) and Y ?(1) for any given field; instead, we only observe one potential outcome for each

field.178

For a given field, define the ‘unit-level treatment effect’ as the simple difference Y ?(1)−

Y ?(0) (table 1). Of course, this treatment effect is never observable for any field. We define180

population-level treatment effects as averages, or expectations, of the unit-level treatment

effects. We will examine two population-level treatment effects. The average treatment effect182

(ATE) is just the expectation of the unit-level treatment effects, that is

ATE = E [Y ?(1)− Y ?(0)] = E [Y ?(1)]− E [Y ?(0)] . (1)

In the context of cotton, we can think of the ATE as the expected difference in the average184

response if all fields were treated for early-season Lygus, vs. the average response if no

fields were treated for early-season Lygus. In addition to the ATE, we can also define the186

population-level treatment effect for the subset of fields that actually were treated for early-

season Lygus. This quantity is typically referred to as the average treatment effect on the188

treated (ATT), and is defined as

ATT = E [Y ?(1)− Y ?(0)|A = 1] = E [Y ?(1)|A = 1]− E [Y ?(0)|A = 1] . (2)

The ATT is a more appropriate measure of the causal effect than the ATE if it does not190

make sense to contemplate the potential outcomes under treatment A = 1 for untreated

fields. Here, we argue that the ATT is the most appropriate estimator of the average causal192

effect of early-season Lygus treatment in cotton, because treating a cotton field with low

Lygus densities bears questionable relevance towards estimating secondary pest outbreaks194

in fields with sufficient Lygus densities to merit insecticide treatment.

Before proceeding, we note that although Y ?(1)−Y ?(0) is the most commonly considered196

treatment effect, other treatment effects can be defined. For example, we could consider the
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treatment effect to be the proportional change Y ?(1)/Y ?(0). One could also consider different198

population-level summaries of treatment effects, such as the median unit-level treatment

effect, or the proportion of units for which Y ?(1) > Y ?(0).200

Estimating treatment effects from data

We now discuss estimating population-level treatment effects with data. Although we are202

ultimately interested in estimating treatment effects with observational data, it is helpful to

first discuss estimating the ATE in the context of randomized experiments.204

All of the arguments below require a technical assumption that the outcome observed

equals the potential outcome for the treatment received. That is, for a = 0, 1, if the unit206

received treatment A = a, then the observed outcome Y = Y ?(a). Rubin and colleagues

call this the stable-unit treatment value assumption (SUTVA; Rubin (1980)). The primary208

implication of SUTVA is that the outcome observed for any unit is not influenced by the

treatment received by any other unit. In essence, SUTVA is an assumption of independence210

among the data.

In an experiment, randomized treatment assignment implies that the potential outcomes212

Y ?(0) and Y ?(1) are independent of A for each unit. This independence plus SUTVA implies

that the difference between the means of the treated and untreated groups is an unbiased214

estimator of the ATE. To see this, let na be the number of units that received treatment

A = a, and write the expectation of the difference between the treatment-group means as216

E

[
1

n1

∑
i:Ai=1

Yi −
1

n0

∑
i:Ai=0

Yi

]
= E [Y |A = 1]− E [Y |A = 0] . (3)

Now, it suffices to show that E [Y |A = a], the expected outcome of a unit that received

treatment A = a, is equal to E [Y ?(a)], the expected potential outcome under A = a for all218
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units. The proof proceeds as

E [Y |A = a] = E [Y ?(a)|A = a]

= E [Y ?(a)] (4)

where the first equality follows by SUTVA, and the second by independence of the potential220

outcomes and the treatment under randomized treatment assignment. Plugging eq. 4 into

eq. 3 yields222

E [Y |A = 1]− E [Y |A = 0] = E [Y ?(1)]− E [Y ?(0)]

= ATE.

In observational studies, treatment assignment is not random. Thus, the treatment as-

signment may not be independent of the potential outcomes, and thus the average response224

for fields that received treatment A = a may not be an unbiased estimate of the expected

potential outcome under A = a across all fields. In particular, non-random treatment as-226

signment introduces the possibility that confounding with one or more additional variables

may produce spurious (i.e., non-causal) correlations between treatment and response. In228

cotton, such non-causal correlations may arise from (among other confounders) variation in

PCAs’ tendencies to recommend insecticide applications, and/or variation in the vigor of the230

cotton crop (more vigorous crops may attract arthropod herbivores of several species). This

potential for spurious correlations between treatment A and response Y in observational232

data makes it impossible to assign a causal interpretation to the simple difference between

treated and untreated fields.234

How can we construct unbiased estimators of average treatment effects when the treat-

ment assignment is not random? The key insight is this. Unbiased estimators of causal236

effects are obtainable if we measure a set of possible confounders, denoted X, such that

given knowledge of X, the treatment assignment is independent of the potential outcomes.238

The assumption that A is conditionally independent of Y ?(0) and Y ?(1) given X is referred to
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as the ‘no unmeasured confounders’ assumption, or (more awkwardly, but more accurately)240

the ‘unconfoundedness’ assumption.

We present one method for estimating causal effects under unconfoundedness below.242

First, however, we discuss the unconfoundedness assumption. Ultimately, unconfoundedness

is an assumption on the science of the process being studied. Validation of the uncon-244

foundedness assumption solely via data is (to our knowledge) impossible. As such, the

unconfoundedness assumption requires careful scrutiny and thorough knowledge of the sys-246

tem. Moreover, the unconfoundedness assumption could easily be controversial, as two

reasonably minded scientists could reach different conclusions regarding whether a set of248

covariates fully removes confounding between treatment and potential outcomes (Imbens &

Wooldridge, 2009). Nonetheless, as Imbens & Wooldridge (2009) state, “there are many250

cases where there is no clearly superior alternative [to the unconfoundedness assumption],

and the only alternative is to abandon the attempt to get precise inferences.” Pearl (1995,252

2000; summarized in Jewell (2004)) discusses graphical methods for identifying confounders,

and we use these methods below.254

A host of methods have been developed for estimating causal effects under the assump-

tions of SUTVA and unconfoundedness (Imbens & Wooldridge, 2009), and it is beyond the256

scope of this article to review them all here. Here, we estimate causal treatment effects using

regression. Let ma(X, γa) denote regression models for the observed outcome under A = a,258

that is, ma(X, γa) = E [Y |X, A = a] where γa is a vector of parameters. The models ma may

be any type of regression, including a multiple regression, a generalized linear model, or a260

nonparametric regression.

To derive an unbiased estimator for ATE or ATT, it suffices to show that ma(X, γa)262

equals to the expected potential outcome Y ?(a) given X, that is,

ma(X, γa) = E [Y ?(a)|X] (5)
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for a = 0, 1. The desired equality follows by264

ma(X, γa) = E [Y |X, A = a]

= E [Y ?(a)|X, A = a]

= E [Y ?(a)|X]

where the first equality follows by definition, the second by SUTVA and the third by un-

confoundedness. Taking expectations of eq. 5 with respect to X yields EX [ma(X, γa)] =266

E [Y ?(a)].

Thus, to estimate causal treatment effects using regression, we build regression models268

m0(X, γ0) and m1(X, γ1) that regress the observed response Y on the confounders X using

the data that received treatments A = 0 and A = 1, respectively. Then, an unbiased270

estimator for the ATE is

ÂTE =
1

n

n∑
i=1

{m1 (Xi, γ̂1)−m0 (Xi, γ̂0)} . (6)

and an unbiased estimator for the ATT is272

ÂTT =
1

n1

∑
i:Ai=1

{m1 (Xi, γ̂1)−m0 (Xi, γ̂0)} . (7)

The estimators above are not identical to the naive estimate that one would obtain by the re-

gressing Y on X and A, and then extracting the partial regression coefficient associated with274

A. In general, such a partial regression coefficient does not permit a causal interpretation.

Standard errors for ÂTE and ÂTT can be approximated with a nonparametric bootstrap.276

Before moving on, we note that each term in the summations of eqq. 6-7 is a difference

between a fitted value from one regression model and a prediction from a different regression.278

For example, if Ai = 1, then m1 (Xi, γ̂1) is a fitted value and m0 (Xi, γ̂0) is a prediction.

Hence, standard cautions apply regarding predictions with regression models. In particular,280

regression predictions are only trustworthy for confounder values that lie within the support

of the fitted regression model. Thus, the causal-effect estimators above are only reliable to282
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the extent that the A = 0 and A = 1 treatment groups have comparable distributions of

confounders, or that we are willing to extrapolate the fitted regression models to values of284

the confounders beyond the support of the fitted models. This makes intuitive sense — if

there is a confounder with values that do not overlap for the A = 1 and A = 0 groups,286

then separating the effect of the treatment from the confounder is impossible. Imbens &

Wooldridge (2009) have also noted that, in treatment vs. control studies, it is common for288

the confounder values for the untreated or control (A = 0) group to span a broader range

than the confounder values for the treated (A = 1) group. When this occurs (as it does to290

some extent for our data), then predicting Y ?(0) for treated units requires less extrapolation

than predicting Y ?(1) for untreated units. Hence, because only ÂTE requires predicting292

Y ?(1) for untreated units, the ATT can be estimated more robustly than the ATE.

Analysis of secondary pest outbreaks294

Identification of confounders

We identified confounders using the causal graph methodology developed by Pearl (1995,296

2000) and summarized in Jewell (2004) (see Plowright et al. (2008) for another ecological

example). A causal graph consists of a network of putative cause-and-effect relationships298

between variables. Once a causal graph has been suggested, a set of covariates can be identi-

fied that, once controlled for, remove the confounding between the cause and effect variables300

of interest. (A full discussion of how causal graphs can be used to identify confounders is

beyond the scope of this article. In brief, confounding arises via ‘unblocked backdoor paths’302

that connect the putative cause and effect variables. A complete set of confounders is any

set that eliminates all unblocked backdoor paths.) Our causal graph appears in figure 1.304

The causal graph in fig. 1 embodies the assumptions on which our analysis rests, and so

we justify those assumptions here. Both year and cotton type (Acala vs. Pima) are assumed306
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to affect densities of all pests throughout the growing season. (In fig. 1, year and cotton type

are separate nodes, but we combine them because they are topologically equivalent. PCA and308

ranch are combined for the same reason.) Early-season Lygus densities affect early-season

Lygus-insecticide applications, both of which in turn affect late-season Lygus densities. The310

same is true for non-Lygus pests. Neighboring source crops for Lygus such as safflower affect

both early-season Lygus densities and preemptive Lygus insecticide treatment. Early-season312

Lygus feeding also triggers square shed, which is incorporated into PCA’s treatment decisions

and is exacerbated by whether the previous year’s crop was fertilized with phosphorous.314

For several reasons, both early- and late-season insecticide application for Lygus may be

likely to increase the chance of early- and late-season pesticide application for non-Lygus316

pests, and vice versa. This may be because, first, the cost of applying several pesticides

simultaneously as part of a ‘tank mix’ is less than the cost of applying the same pesticides318

separately. Second, early-season application of broad-spectrum pesticides for Lygus may

decrease the abundance of natural enemies, or enhance the vigor of cotton plants (White,320

1984), both of which may in turn impact the densities of non-Lygus pests. Finally, both

PCAs and farmers may be more or less aggressive in their management styles.322

We re-iterate that our causal graph in figure 1 is a hypothesis, and the causal relation-

ships that it embodies are open to debate. It is our best working hypothesis, however, and324

it is the hypothesis on which our analysis below rests. Using the causal graph in fig. 1, a

set of six covariates can be identified that confound the relationship between early-season326

insecticide application for Lygus and late-season pesticide application for secondary pests.

These confounders are year, cotton type, early-season Lygus density, early-season pesticide328

treatments for non-Lygus pests, PCA, and ranch. In addition to these six covariates, we

also include a PCA × year interaction, because there is evidence that the PCAs’ manage-330

ment strategies changed across the years. Importantly, this set of confounders is identical

regardless of the particular mechanism that drives secondary pest outbreaks (e.g., reduction332
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in natural enemies, changes in cotton physiology or reduced competition).

Data preparation334

We calculated early-season Lygus density as the average number of Lygus individuals col-

lected in a standard sweep net sample, averaged across all sampling occasions prior to July336

1 or the first insecticide application for Lygus, whichever came first. We excluded data from

ranches with 3 or fewer early-season Lygus applications, or from PCA × year combinations338

with 0 or 1 early-season Lygus applications, as in our judgment these ranches or PCA × year

combinations did not have sufficient data to estimate regression parameters reliably. Cotton340

type was occasionally not recorded, and so we allowed three levels of the categorical variable

for cotton type: Acala (56%), Pima (33%) and unknown (11%). We did not include fields342

planted in hybrid (Pima × Acala) cotton (< 0.5%). All told, we used n = 969 unique fields

for our regression modeling, spanning 11 ranches and 9 years. These fields ranged in size344

from 2.1 to 593.0 acres, with a median size of 76.0 acres (approx. s.e. 2.7 acres). Of these

fields, n1 = 217 received early-season insecticide application for Lygus.346

Regression modeling

We used Poisson regression models because our response variable was a count. We did not348

add or remove confounders from X based on their statistical significance, because our choice

of variables to include in X is based on our hypothesized causal graph. Indeed, variable350

selection in regression models for causal inference is an area of active research (Imbens &

Wooldridge, 2009).352

We estimated the statistical uncertainty in our estimated treatment effects by a non-

parametric bootstrap with 500 bootstrap data sets. To avoid bootstrap data sets with354

ranches or PCA-year combinations with too few instances of treated or untreated fields,

we used a conditional resampling scheme, in which records were resampled within each356
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ranch-year-treatment combination. Consequently, bootstrap inferences pertain only to these

specific ranches and years. Moreover, the bootstrap relies on the assumption that late-358

season, non-Lygus pesticide applications are conditionally independent across fields within

each ranch and year, given treatment and covariates. To evaluate this assumption quantita-360

tively, we estimated the correlation among residuals for fields from the same ranch and year,

using a Pearson correlation coefficient and deviance residuals from the Poisson regressions.362

We also analyzed late-season pesticide applications for three of the most common non-

Lygus pests: aphids, mites, and armyworms. In each case, we only used data from ranches364

and PCA × year combinations in which at least one late-season pesticide application for

the particular secondary pest was recorded for both possible early-season Lygus treatments.366

We used a subset of 805, 666 and 453 records for our aphid, mite and armyworm analyses,

respectively.368

Results

Table 1 summarizes the estimated causal effects of early-season insecticide application for370

Lygus. Fields that were treated for early-season Lygus (A = 1) received an average of 2.25

(s.e. = 0.13) late-season pesticide treatments for non-Lygus pests, incurring an average cost372

of US$29.6 per acre (s.e. = US$1.9). We estimate that, had those same fields not been

treated for early-season Lygus, they would have required ÂTT = 0.45 (= 20.2%) fewer late-374

season non-Lygus pesticide applications (bootstrap s.e. = 0.10; 95% bootstrap CI = (0.23,

0.64); one-tailed bootstrap p < 0.002). We estimate the cost of these late-season pesticide376

applications caused by early-season treatment for Lygus at US$6.0 per acre (s.e. = $1.3;

20.2% of the total cost).378

Across all fields, the estimated average treatment effect (ATE) is negligible (= 0.00;

b.s.e. = 0.11; 95% bootstrap CI = (-0.21,+0.22)). The ATE is less than the ATT because380

the estimated causal effect of early-season Lygus treatment for untreated fields is negative
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(-0.14). That is, if untreated fields had been treated, we estimate that they would have382

required fewer late-season secondary pesticide applications. Although the estimated causal

effects for treated and untreated fields are not equal in magnitude, the two effects cancel384

out in the population-level ATE because only one-quarter of the fields in our data set were

treated for early-season Lygus.386

Aphids, mites and armyworms comprised the preponderance (91%) of non-Lygus targets

for late-season pesticides. Species-level analyses suggest that, in treated fields, early-season388

treatment for Lygus increased the number of late-season pesticide applications for aphids,

mites and armyworms by 0.28 (b.s.e. = 0.06), 0.09 (b.s.e. = 0.11) and 0.09 (b.s.e. = 0.04),390

respectively (Table 3). (With Poisson regression, estimated treatment effects for individual

species do not necessarily add together to equal the total treatment effect.) Considering the392

statistical precision of these estimates, the estimated treatment effects are roughly propor-

tional to the relative frequencies with which each species occurred as a late-season target394

across all fields.

Estimated causal effects can be visualized by plotting predicted outcomes with and with-396

out early-season Lygus treatment (figure 2). This plot suggests that the effect of early-season

Lygus insecticide is not uniform, but depends subtly on the expected number of late-season398

secondary-pest treatments. Early-season Lygus treatment appears to have the largest effect

on secondary pest outbreaks when the expected number of late-season secondary pest treat-400

ments is small (1–4), but has a smaller (and possibly reversed) effect when the expected

number of late-season secondary pest treatments is large (> 6). The banding in fig. 2 oc-402

curs because categorical predictors (ranch, PCA, year, and cotton type) were the dominant

predictors in regression model m0, while average early-season Lygus density explained more404

of the variation in the response in model m1. Although the regression models m0 and m1

are not the focus of our analysis, we provide summaries of these models in the appendix.406

Analysis of deviance residuals from Poisson regressions suggested a mild but statistically
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significant correlation among fields from the same ranch and year (common Pearson’s cor-408

relation coefficient = 0.17, p < .001). Neither model m0 nor m1 suggested overdispersion

relative to a Poisson distribution.410

Discussion

Using ATT as the most relevant measure of causal effects, this analysis suggests that, for412

the cotton fields in this study, an early-season, broad-spectrum insecticide treatment for

Lygus elicited secondary pest outbreaks that were responsible for 20% of late-season non-414

Lygus pesticide applications. Late-season pesticide applications to manage secondary pest

outbreaks cost US$6.0 per acre, on average. To the extent that we can determine, secondary416

outbreaks of aphids, mites and armyworms occurred in roughly similar proportion to the

overall frequencies with which each species appeared as a late-season pest.418

We consider ATT to be a better measure of the causal effect of early-season insecticide

treatment for Lygus than ATE. The ATT is an estimate of the causal effect of early-season420

Lygus treatment in fields that were actually treated. The ATE is an estimate of the overall

causal effect if all fields had been treated for Lygus regardless of early-season conditions.422

Although the ATE is still informative, the ATT is a more relevant measure of secondary pest

outbreaks elicited by early-season Lygus treatment under current management practices.424

The difference between the estimated causal effects in treated and untreated fields might

be explained by observing that the overall effect of an early-season broad-spectrum insecticide426

on secondary pests combines the direct suppressive effect of mortality from the pesticide with

indirect, disruptive effects that promote secondary pest outbreaks (e.g., reduced abundances428

of natural enemies). We speculate that the indirect, disruptive effects exceeded the direct

suppressive effects in fields that were treated for early-season Lygus, while the reverse would430

have been true (though to a lesser degree) in fields that were not treated for early-season

Lygus. Although we don’t know with certainty why this may be so, we observe that the432
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predicted number of late-season non-Lygus pesticide applications in treated fields, if those

fields had not been treated (2-25-0.45=1.80), was less than the actual number of late-season434

non-Lygus pesticide applications in untreated fields (1.99). This difference may indicate that,

prior to the application of an early-season insecticide, natural enemies were contributing more436

to pest suppression in fields that were ultimately treated.

Several possible (and non-exclusive) mechanisms may drive secondary pest outbreaks,438

and this analysis does not discriminate among them. However, to the extent that the sec-

ondary pest outbreaks observed are caused by the disruptive effects of killing arthropod440

predators and parasitoids, the dollar value of the cost of pesticide applications required to

curb secondary pest outbreaks sets a lower bound on the ecosystem services provided by442

native communities of natural enemies in this system. A full accounting of the value of the

ecosystem services provided by native natural enemies would require (at the least) measuring444

the cost of all pest outbreaks under the hypothetical scenario in which natural enemies were

permanently absent. Such an accounting is beyond the scope of this analysis. Nevertheless,446

this lower bound may inform ongoing efforts to valuate ecosystem services in agriculture

(Costanza et al., 1997; Zhang et al., 2007).448

Without doubt, our analysis rests on a host of assumptions. The chief assumption is that

the decision of whether or not to treat fields for early-season Lygus is conditionally indepen-450

dent of the potential outcomes (the number of late-season secondary pesticide applications),

given the confounding variables in the regression models. We argue that this is a viable452

assumption, especially because our confounder data document the conditions (including Ly-

gus densities) that were used to determine pesticide treatments. Nonetheless, if there are454

unmeasured confounders that are correlated with both the early and late-season pesticide

recommendations, then those confounders would render this analysis suspect.456

Careful consideration must also be given to the extent to which the hierarchical struc-

ture of these data compromise the assumption of conditional independence among fields.458
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Although the data consist of n = 969 fields (or, more accurately, field-years), these fields

are nested within 11 ranches, and the ranches are in turn nested within 4 PCAs. Thus, it460

is reasonable to ask whether or not the statistical precision of the analysis is exaggerated

by considering the fields as conditionally independent given treatment and covariates. An462

analysis of residuals from our regression models suggest that fields from the same ranch and

year are indeed positively correlated, albeit mildly (+0.17). One likely explanation for this464

correlation is that population dynamics of arthropod communities could have a spatial aspect

that exceeds the scale of a single field. For example, mowing an alfalfa field could trigger466

Lygus migrations into several nearby cotton fields. This may be particularly true for smaller

cotton fields that have a greater edge-to-area ratio and are less buffered against arthropod468

dispersal. Thus, these data contain less information than n = 969 truly independent fields,

and the statistical uncertainty in our estimates is slightly greater than the bootstrap calcu-470

lations suggest. Conceivably, one could design a bootstrap procedure that accounts for this

spatial correlation (e.g., Zhu & Morgan (2004)), although doing so in conjunction with the472

conditional resampling already required would be challenging.

This analysis is not intended as a management recommendation for cotton farmers. In-474

tegrated pest management in cotton must consider a host of additional factors, not the least

of which is the yield of the cotton crop. Instead, the goal of this analysis is to quantify an476

ecological phenomenon that is difficult to document experimentally.

The statistical methods for causal inference used here are, to our knowledge, not yet478

broadly known or used in the natural sciences. On the one hand, the theory underlying

causal inference methods has been rigorously developed, and the methods enjoy growing480

use in some realms of science (Rosenbaum, 2002; Rubin, 2005; Imbens & Wooldridge, 2009;

Gangl, 2010). On the other hand, these methods have not withstood the test of time to the482

same extent as more conventional statistical approaches, and thus some healthy skepticism

is warranted. However, causal inference methods may promise new analytical possibilities484
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for some types of ecological and/or agricultural studies, and their usefulness deserves to be

investigated.486

In our view, there are two primary challenges to using causal inference methods in ecol-

ogy. First, these methods require enough data to support defensible statistical models for488

all of the possible treatments that one wishes to consider. As such, causal inference methods

will be most useful in ecoinformatics settings, where considerable volumes of data can be490

gathered. Because these data should span a breadth of treatments or management strate-

gies, the most promising settings will be ones in which decision-makers have attempted a492

diversity of approaches. Second, the ‘unconfoundedness’ assumption requires that data are

available for covariates that confound treatment with response. While it is difficult to spec-494

ulate broadly about the types of problems for which these data may exist, we suspect that

appropriate data are more likely to be available in management settings such as IPM or496

natural resource management, where managers may document conditions that influenced

management decisions.498

As a final, technical note, we observe that for this analysis, the implementation of causal

inference methods was complicated by the prevalence of categorical variables (e.g., ranch,500

PCA, year, cotton type) in our set of confounders. As we mention above, when using

regression models to quantify causal effects, the distributions of the confounders need to be502

sufficiently comparable among treatment groups. This comparability is more challenging

with categorical confounders because categorical confounders increase the dimensionality of504

the confounder space. To the extent that categorical confounders may be more common

in the natural sciences than in econometrics or public health, high-dimensional confounder506

spaces may open a technical challenge in causal inference theory that is ripe for new progress.
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Table 1: The potential outcomes framework for causal inference. Table adapted from Rubin (2005).

Experimental Treatment Potential outcomes Unit-level Population-level

unit (field) received Covariates A = 1 A = 0 causal effect causal effects

1 A1 X1 Y ?
1 (1) Y ?

1 (0) Y ?
1 (1)− Y ?

1 (0)

...
...

...
...

...
... ATE = E [Y ?(1)− Y ?(0)]

i Ai Xi Y ?
i (1) Y ?

i (0) Y ?
i (1)− Y ?

i (0)

...
...

...
...

...
... ATT = E [Y ?(1)− Y ?(0)|A = 1]

n An Xn Y ?
n (1) Y ?

n (0) Y ?
n (1)− Y ?

n (0)
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Table 2: Estimated effects of early-season, broad-spectrum insecticide application for Lygus

on late-season pesticide applications for non-Lygus pests

Treated fields (A = 1) All fields

Sample size n1 = 217 n = 969

Average late-season applications (s.e.)† 2.25 (0.13) 2.05 (0.07)

Estimated causal effect ATT = +0.45 (0.10) ATE = -0.00 (0.11)

Estimated causal effect, percentage basis 20.2% (4.5%) -0.2% (5.4%)

Average total cost in US$ per acre‡ $29.6 ($1.9) $27.2 ($0.9)

Estimated causal effect, cost basis $6.0 ($1.3) -$0.1 ($1.5)

† Average total number of pesticide applications for arthropod pests other than Lygus

on or after July 1.

‡ Average total cost of pesticide applications for arthropod pests other than Lygus on

or after July 1.
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Table 3: Pesticide applications for non-Lygus pests on or after July

1, by species

Treated fields (A = 1) All fields

ATT (s.e.) Total (s.e.) ATE (s.e.) Total (s.e.)

Aphids† 0.28 (0.06) 1.14 (0.07) 0.00 (0.06) 1.00 (0.03)

Mites‡ 0.09 (0.11) 0.45 (0.05) 0.04 (0.06) 0.40 (0.02)

Armyworms§ 0.09 (0.04) 0.45 (0.05) -0.10 (0.07) 0.40 (0.03)

† ATT and ATE calculated for a subset of n = 805 data records.

‡ ATT and ATE calculated for a subset of n = 666 data records.

§ ATT and ATE calculated for a subset of n = 453 data records.
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Figure Legends

Figure 1. A causal graph for the Lygus-cotton system. Each directed edge represents a

putative cause-and-effect relationship between variables. Nodes in boxes are the putative

treatment (early-season insecticide applications for Lygus) and response (late-season insec-

ticide applications for secondary pests) variables. Nodes in ovals form a set of confounders

for the causal relationship between treatment and response.

Figure 2. Fitted or predicted number of late-season pesticide applications for secondary

pests with early-season insecticide treatment for Lygus (A = 1) vs. without early-season

insecticide treatment for Lygus (A = 0). Left panel: fields that were treated for early-season

Lygus (A = 1). Right panel: all fields. Diagonals are lines of equality.
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On-line appendix: Estimating costs of pesticide applications 

 

We estimated the cost of pesticide applications made after July 1 as follows: 

 

1.  Estimating the cost of the pesticides, as purchased from agricultural chemical suppliers. 

Our database documented the applications of 44 different insecticides or acaricides (i.e., distinct 

active ingredients) to cotton. In many cases, different agricultural chemical companies market 

the same active ingredient under different trade names, which are sold at very similar prices; we 

therefore combined all brands of a given active ingredient when estimating cost. We used two 

sources of information to estimate the cost of the insecticides. First, we obtained list prices for 40 

of the most common pesticides from a leading agricultural chemical company that sells to 

California farmers. The remaining four chemicals (chlorfenpyr, tebufenozide, carbofuran, and 

amitraz), which were applied to cotton only very rarely, were assigned a cost equal to the 

average for the 40 pesticides for which data were available ($10.56 per application; see below). 

Second, because California cotton is typically grown on a large scale, and because customers 

who purchase large quantities of agricultural chemicals can negotiate substantial price discounts, 

we solicited from our cooperating growers the actual prices they paid in recent (early 2010) 

chemical purchases. We obtained contract prices paid for 16 of the 40 pesticides, including most 

of the commonly used materials; the mean discount realized was 57%. For the remaining 

chemicals, we applied this mean discount to the list prices to estimate the price likely to be paid 

by commercial cotton farmers. 

 

2. Estimating the quantities typically used in a single application to cotton. 



We reviewed records in our database to obtain recent data (2007-2008) on the amounts of 

pesticides typically applied in a single application to a cotton crop. Standard rates can vary 

somewhat, within the legal bounds established by pesticide label requirements, across years, 

farmers, and pest control advisors. In all cases, we attempted to identify the most common or 

mid-range application rate. In a few cases, application rates varied as a function of (i) the pest 

target, (ii) the time of year, or (iii) whether or not the pesticide was being applied in combination 

with another pesticide. In each case, we adjusted our cost estimates accordingly. 

Bringing together our data on pesticide costs and application rates, we estimated the mean 

chemical cost for a single application per acre of cotton of $10.56 (range: $1.73 - $37.80 across 

the 44 different pesticides) 

 

3.  Estimating the costs of applying the pesticide to the cotton crop. 

Nearly all pesticide applications are made by custom applicators, rather than by the farmers 

themselves, facilitating estimation of the cost of applying the materials. Most pesticides are 

applied to cotton by air, with fixed-wing aircraft, at a rate of 10 gallons water (carrier) per acre. 

The cost of such an application was estimated as $9.00 per acre, as confirmed by cooperating 

pest control advisors and local custom applicators. Some pesticides were applied by air, but 

using a higher gallonage (15 gallons/acre; cost = $10.90/acre) or using ground spray rigs 

($9.00/acre). Finally, one of the commonest pesticides, aldicarb, is frequently applied during the 

planting operation; in this case we assigned no additional application cost. 

 

4.  Rules for assigning application costs when multiple agricultural chemicals were applied 

together (‘tank mixes’). 



It is common for farmers to apply several chemicals simultaneously as a ‘tank mix.’ Such mixes 

may include multiple pesticides, or may include combinations of pesticides and other agricultural 

chemicals, including plant growth regulators (e.g., mepiquat chloride, which restrains vegetative 

growth) or defoliants (which must be applied at least once prior to harvest). We used the 

following rules in assigning application costs to pesticides used for secondary pests when applied 

as tank mixes: (i) we assigned zero application cost in cases where a plant growth regulator or a 

defoliant was present in the tank mix; we reasoned that applications of plant growth regulators or 

defoliants are often obligatory for the farmer, and thus including pesticides in tank mixes with 

such chemicals entails no additional application cost; (ii) in the remaining cases, if N pesticides 

were applied together, we assigned 1/ N of the full application cost to each of the N pesticides. 



On-line appendix table: Residual deviance for model terms for Poisson regression models†
 

 
 
  Residual deviance reduction 

  Model m0
‡ Model m1

§

Predictor df (untreated fields) (treated fields) 

Ranch 7 64.31 31.17 

Cotton type 2 21.28 4.97 

Average early-season Lygus density 1 0.24 6.74 

Number of early-season non-Lygus treatments  1 1.37 0.01 

Year†† 8 188.40 10.98 

PCA‡‡ 3 169.37 101.35 

Year × PCA 8 76.88 39.36 

†Difference in residual deviance between the model with all terms included and the 

model without the given term; analogous to a Type III SS in linear models. 

‡Total residual deviance 620.02 on 721 df 

§Total residual deviance 148.58 on 186 df 

††Residual deviance reduction relative to a model without year or year × PCA interaction 

‡‡Residual deviance reduction relative to a model without ranch [nested in year] or year × PCA 

interaction 


