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Abstract

Recent advances in bioinformatics have made high-throughput microbiome data widely avail-
able, and new statistical tools are required to maximize the information gained from these data.
For example, analysis of high-dimensional microbiome data from designed experiments remains
an open area in microbiome research. Contemporary analyses work on metrics that summarize
collective properties of the microbiome, but such reductions preclude inference on the fine-scale
effects of environmental stimuli on individual microbial taxa. Other approaches model the pro-
portions or counts of individual taxa as response variables in mixed models, but these methods
fail to account for complex correlation patterns among microbial communities. In this paper,
we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within
the microbiome, a model we call MIMIX (MIcrobiome MIXed model). MIMIX offers global
tests for treatment effects, local tests and estimation of treatment effects on individual taxa,
quantification of the relative contribution from heterogeneous sources to microbiome variability,
and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored
to large microbiome experiments using a combination of Bayesian factor analysis to efficiently
represent dependence between taxa and Bayesian variable selection methods to achieve sparsity.
We demonstrate the model using a simulation experiment and on a 2x2 factorial experiment of
the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of
Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research
initiative.
Keywords: continuous shrinkage prior; factor analysis; microbiome; mixed model; Nutrient
Network; OTU abundance data.
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1 Introduction1

A microbiome is a community of microorganisms and their genomes that belong to a particular2

ecological niche such as the human gut, soil, plants, or ambient dust. Samples collected from3

these habitats invariably contain thousands of archaea, bacteria, and fungi which may be identified4

through their DNA with next-generation sequencing technologies (Metzker, 2010). Understanding5

how these microbial communities interact with their environment holds significant implications for6

the fields of human health (Wu and Lewis, 2013), climate change (Bond-Lamberty et al., 2016),7

forensics (Grantham et al., 2015), and more. However, the tools available for characterizing micro-8

biomes are, at present, largely limited to descriptive studies and must evolve to meet the advanced9

needs of the microbiome research community. To this end, the interdisciplinary Unified Microbiome10

Initiative (Alivisatos et al., 2015) aims to achieve “predictive understanding that allows evidence-11

based, model-informed microbiome management and design” by encouraging collaborative work on12

several promising areas of emphasis.13

One such area of emphasis is the development of new statistical models for microbiome data14

analysis with environmental covariates, particularly in the presence of heterogeneous sources of15

variability. Microbiome data are difficult to model because they are high-dimensional, sparse, over-16

dispersed, and possess complex dependence structure. Moreover, as a consequence of the next-17

generation sequencing technology, the data are compositional, meaning they convey relative rather18

than absolute information; a microbe’s abundance in a sample (the number of times its DNA was19

read by the sequencer) depends on the sequencing depth (the total number of reads). Most standard20

multivariate statistical methods are designed for the analysis of absolute information and will yield21

spurious correlations among variables when applied indiscriminately to compositional data (Pearson,22

1896).23

In the face of these difficulties, contemporary analysis of microbiome data often works on met-24

rics that summarize collective properties of the entire microbiome, such as measures of taxonomic25

diversity. For example, in ecology, within-sample diversity is most simply measured as the mean26
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number of unique taxa observed in a sample, referred to as α-diversity. Among-sample diversity,27

referred to as β-diversity, describes differences in taxonomic composition among samples, and may28

be quantified by measures like Bray-Curtis dissimilarity (Bray and Curtis, 1957) or, if full taxonomic29

assignments are available, UniFrac distance (Lozupone and Knight, 2005). Permutational multi-30

variate analysis of variance (PERMANOVA) with pairwise differences between samples (McArdle31

and Anderson, 2001) is a popular tool to test whether environmental covariates are associated with32

significant differences in these summary metrics. However, PERMANOVA does not yield inferences33

about how the environment affects individual microbes. Additionally, implicit assumptions made by34

such distance-based multivariate methods may be inappropriate for ecological count data altogether35

(Warton et al., 2012).36

More recently, and in a different vein, others have suggested analyzing the microbiome by fitting a37

separate generalized linear mixed model to the abundance of each taxon. For instance, a linear mixed38

model with arcsine square root transformation or, if sparsity and overdispersion are of particular39

concern, a zero-inflated beta model (E. Chen and Li, 2016) are viable methods for inferring treatment40

effects on the relative abundance (proportions) of taxa in the presence of random effects. Alternative41

approaches model the raw abundance (counts) directly, accounting for the uncertainty associated42

with a taxon’s abundance by conditioning on the total reads per sample (McMurdie and Holmes,43

2014). Hierarchical mixtures, such as beta-binomial and gamma-Poisson, are quite robust for this44

purpose and possess added flexibility for overdispersed data (Zhang et al., 2017).45

An alternative to these univariate approaches is to model taxa within the microbiome jointly46

rather than individually. Unlike univariate models, multivariate models can pool information across47

taxa to increase power for detecting and estimating treatment effects. Towards this end, the48

Dirichlet-multinomial (DM) model — the multivariate extension of beta-binomial — provides a49

rich framework for modeling the entire vector of raw abundance data in each microbiome sample.50

For example, the DM has proven useful for microbiome analysis in the areas of hypothesis testing51

and power calculations (La Rosa et al., 2012), sparse variable selection (J. Chen and Li, 2013), infer-52

ence of microbial community structure (Shafiei et al., 2015), and regression modeling (Wadsworth53
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et al., 2017). Despite their utility, without further hierarchical structure Dirichlet variates have54

the undesirable property that they must negatively co-vary, making them ill-suited for modeling55

microbial taxa that often have positive associations, perhaps because they share similar habitat56

niches or because they interact symbiotically.57

Models with more flexible dependence structures among microbial taxa have recently been pro-58

vided by Xia et al. (2013) and Ren et al. (2017). Xia et al. (2013) use a logistic normal multinomial59

(LNM) model that links the multinomial probability vector to a multivariate normal random vari-60

able, resulting in unconstrained occurrence probabilities on the linked scale. The covariance struc-61

ture specified by Xia et al. (2013) captures both positive and negative associations among taxa,62

unlike the DM covariance. However, while suitable for small collections of taxa, their method for63

estimating this dependence structure is infeasible for high numbers of unique taxa produced by next-64

generation sequencing technologies. In a different vein, Ren et al. (2017) use dependent Dirichlet65

processes to develop a Bayesian nonparametric ordination that enables convenient visualization of66

differences among microbial communities. Mixed-model versions of any of these approaches — DM,67

LNM, or Bayesian nonparametric ordination — needed to analyze experiments following split-block68

designs have yet to be developed for microbiome data, owing to the difficulty of introducing random69

effects into the model hierarchy.70

With these considerations in mind, we propose MIMIX (MIcrobiome MIXed model), a Bayesian71

mixed-effects model for analyzing microbiome data as a response variable in designed experiments.72

MIMIX achieves four scientific objectives: (1) global tests of whether experimental treatments affect73

microbiome composition; (2) local tests for treatment effects on individual taxa and estimation of74

such effects if present; (3) quantification of how different sources of variability contribute to the75

microbiome heterogeneity; and (4) characterization of latent structure in the microbiome, which76

may suggest ecological subcommunities. MIMIX is a LNM mixed model that uses Bayesian factor77

analysis (Rowe, 2002) to capture complex dependence patterns among microbial taxa. Specifically,78

MIMIX models high-dimensional relationships among the transformed abundance probabilities of79

individual taxa through a set of low-dimensional unobservable variables, or factors. MIMIX natu-80
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rally identifies clusters of microbes that respond similarly to experimental conditions by developing81

continuous shrinkage Dirichlet-Laplace priors (Bhattacharya et al., 2015) for these latent factors.82

We then apply Bayesian variable selection priors for the fixed effects on subpopulation abundance,83

reflecting the prior belief that treatments will not affect all ecological communities. In this paper,84

these objectives and features of MIMIX are motivated by a multi-location randomized complete85

block design (RCBD) experiment that seeks to identify the influence of nutrient supplement and86

herbivory on the foliar fungal microbiome of a common perennial prairie bunchgrass.87

The paper proceeds as follows. Section 2 introduces the data that motivate our development88

of MIMIX in Section 3. Section 4 demonstrates our method on simulated data in comparison with89

competing microbiome data analysis methods. Finally, we apply MIMIX to RCBD experiment data90

in Section 5 and close with a discussion in Section 6. Details of posterior sampling schemes are left91

to the Appendix, and open-source code to reproduce the statistical analyses in this paper is available92

online at https://www.github.com/nsgrantham/mimix.93

2 Motivating Data94

The Nutrient Network (NutNet, www.nutnet.org) is a global research cooperative hosted at the95

University of Minnesota that uses a standardized experimental protocol to study the impact of96

human activity at over 100 grassland sites spanning 6 continents (Borer et al., 2014). This article97

is motivated by data collected at 4 of these sites, all in the central US (Iowa, Kansas, Kentucky,98

and Minnesota). Each of these 4 sites features a 2 × 2 factorial experiment that crosses a nutrient-99

supplement treatment (i.e., fertilization) with an herbivore-exclusion treatment in a randomized100

complete block design (RCBD) (Figure 1). Here, we consider the effect of the two experimental101

treatments on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass found102

at each site, and native to prairie ecosystems of central North America.103

In August 2014, leaf samples were collected from four A. gerardii individuals in each treatment104

plot. Samples were collected from plots in three replicated blocks, except in Iowa where A. gerardii105
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Figure 1: A schematic representation of the Nutrient Network experimental design. This experiment
replicates a 2x2 RCB design across several sites. Four plants are sampled from each plot and a
microbial sample is collected from each plant late in the growing season.

was present in only two blocks. Fungal rDNA was amplified and sequenced from each sample, and106

counts of operational taxonomic units (OTUs) within each sample were recorded. (Details of the107

molecular methods and bioinformatics pipeline are provided in the Supplement.) Ten samples were108

later removed from the study due to errors during sequencing, leaving a total of 166 leaf samples.109

Overall, 2,662 fungal OTUs were identified across the 166 samples. Samples contained a median of110

74,099 separate reads, and harbored an average of 200 unique OTUs. Many OTUs were rare, as111

85% of OTUs were identified in <10% of samples.112

Given the preliminary OTU assignments, we wish to investigate each of the following using these113

data. First, we seek to characterize how the experimental treatments affect microbiome communi-114

ties. We perform this analysis in stages: first at a global level where the response is the composition115

of the microbiome community as a whole, and then (if the global test identifies a significant treat-116

ment effect) at a local level that characterizes the effects on the relative abundance of individual117

OTUs. Second, we wish to characterize how the residual variation in the microbiome composition118
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varies among blocks within sites and across sites, as quantifying these sources of variation may119

suggest insight into the ecological processes controlling these microbial communities. Finally, we120

wish to characterize the dependence structure among OTUs, and identify clusters of OTUs that121

may suggest underlying ecological subcommunities.122

3 Methods123

Let Yik denote the count for sample i = 1, . . . , n and taxon k = 1, ...,K, and let mi =
∑K

k=1 Yik124

be the total counts for sample i. The value of mi is an artifact of the sequencing depth of the125

high-throughput sequencing process and thus analyses are performed conditional on its value. For126

observation i, let xi be a p-vector of covariates and let zi ∈ {1, . . . , q} record the source of the random127

effects from one of q blocking factors. This latter notation may be generalized to accommodate128

arbitrarily complex blocking designs, but for notational simplicity we assume a single blocking129

factor in this initial development.130

A multinomial likelihood is natural for multivariate count data, so we take Yi = (Yi1, ..., YiK)′ ∼131

Multinomial(mi,φi) where φi = (φi1, ..., φiK)′ is the vector of expected proportions with φi ∈132

SK = {(φ1, . . . , φK)′ : φk ≥ 0, k = 1, . . . ,K,
∑K

k=1 φk = 1}. We define sample-specific θi =133

(θi1, . . . , θiK)′ ∈ RK mapped to SK by the inverse log-ratio transformation (Aitchison, 1986)134

φik = φk(θi) =
exp(θik)
K∑
l=1

exp(θil)

for k = 1, . . . ,K. (1)135

There is a loss of dimension in transforming from RK to SK due to the latter’s unit-sum constraint.136

The likelihood is invariant to adding a constant to the parameters θik; however, as the prior mean137

of the average
∑

k θik is 0, the parameters will tend to be centered around 0 in the posterior.138

In the spirit of Billheimer et al. (2001), we associate fixed and random effects with the microbiome139

composition through the mean of θi. The mixed effects decomposition is given by θi = µ+ βxi +140

γzi + εi, where µ = (µ1, . . . , µK)′ is the overall population mean, β is a K × p matrix of unknown141
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fixed effect coefficients, γr is a K-vector of random effects from block r, and εi
iid∼ NK(0,Ω) is142

sample-specific random variation. Conditioned on the random effects, the regression coefficient143

for covariate j and taxon k, βjk, has the usual logistic regression interpretation when reducing144

compositional data to the binary outcome that a sample comes from taxon k versus any of the145

other K − 1 taxa. That is, with all else fixed, if the jth covariate increases by one the log odds of a146

sample coming from taxon k increase by βjk.147

The number of taxa, K, is often very large in microbiome compositions. To address compli-148

cations due to high dimensionality and to account for relationships among taxa, we use Bayesian149

factor analysis (Rowe, 2002) to model the fixed and random effects within a lower dimensional150

representation. For a number of factors L, let Λ = (λ1, . . . ,λL) be the K ×L latent factor loading151

matrix, unknown and to be estimated. Suppose Λ is common to all fixed and random components152

of the model, i.e., β = Λb, γr = Λgr, r = 1, . . . , q, and εi = Λei + δi, i = 1, . . . , n. Then we may153

represent θi = µ+ Λfi + δi where fi = bxi + gzi + ei is the low-dimensional factor score vector for154

sample i. Under this common factor structure each latent factor captures sets of taxa correlated155

in their response to the model’s covariates and other sources of variability. This shared-factor as-156

sumption is not inherent to our approach and if separate factors are thought to drive the fixed and157

random effects then these two components can be modelled separately.158

A prior on Λ should ensure that the factor loading matrix captures common, cross-species co-159

variance that lends itself to post-hoc inference of collective taxa responses. For instance, setting160

entire columns of Λ to zero is a means of selecting the number of active factors and setting individual161

elements within Λ to zero allows the factors to represent subsets of taxa (Carvalho et al., 2008). To162

achieve both forms of sparsity, we place continuous shrinkage priors on the high-dimensional factor163

loadings λl, l = 1, . . . , L comprising Λ. In particular, we select a Dirichlet-Laplace prior (Bhat-164

tacharya et al., 2015) for its ability to detect sparse signals in high-dimensional linear regression,165

which we modify here for factor analysis. For factors l = 1, . . . , L, let λl ∼ DLal represented by166

λkl | ξkl, τl ∼ Lap (ξklτl) , ξl = (ξ1l, . . . , ξKl)
′ ∼ Dir(al, . . . , al), and τl ∼ Gam(Kal, ν)167
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for k = 1, . . . ,K, where ν ∼ G(c0, d0) and each al is given a discrete uniform prior over (0, 1) with168

smaller values favoring aggressive shrinkage of terms toward zero. The Laplace distribution may be169

equivalently represented as a scale mixture of normals with exponential mixing density,170

λkl | ψkl, ξkl, τl ∼ N
(
0, ψklξ

2
klτ

2
l

)
and ψkl ∼ Exp(1/2),171

a form that allows for straightforward Gibbs sampling of the associated parameters.172

Another aim of this model is to test and quantify treatment effects on each taxon, so we place a173

spike-and-slab prior on b for the purposes of stochastic variable selection (Mitchell and Beauchamp,174

1988). Unlike the DL prior, the spike-and-slab prior places probability on the coefficients being175

exactly zero. This allows us to compute posterior probabilities that effects are zero leading to a176

Bayesian test, satisfying one of MIMIX’s objectives. Let ωjl be an indicator variable taking the177

value 1 (0) when bjl is included (excluded) from the model. The spike-and-slab prior is given178

by Pr(ωjl = 0) = 1 − πj and bjl | ωjl = 1 ∼ N(0, σ2
b ), where πj ∼ Beta(a0, b0) is the inclusion179

probability for covariate j in the model. We select a0 and b0 such that the prior inclusion probability180

for each covariate is set at some c ∈ [0, 1]. In particular, the number of factors for which fixed effect181

j is active, Sj =
∑L

l=1 ωjl, follows a beta-binomial distribution such that Pr(Sj > 0) = 1−Pr(Sj =182

0) = 1− Γ(L+b0)Γ(a0+b0)
Γ(L+a0+b0)Γ(b0) , where Γ(·) is the gamma function. Fixing this quantity at c and selecting183

a0 = 1 for convenience, we use the property that Γ(n + 1) = nΓ(n) for any positive integer n to184

arrive at b0 = (1−c
c )L.185

Placing priors on the remaining parameters and hyperparameters of this model completes the186

Bayesian specification. We use continuous priors for the intercept and random effects terms as we do187

not intend to test whether or not they are zero. Let µk
iid∼ N(0, σ2

µ), grl
iid∼ N(0, σ2

g), eil
iid∼ N(0, σ2

e)188

where σ2
e = 1 to identify the scale of Λ, and δik

ind∼ N(0, σ2
k) where σ2

k can capture over-dispersion189
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in the sequence reads of taxon k. These choices induce covariance190

Cov(θi,θi′ |µ, b,Λ,Σ, σg) =



(σ2
g + 1)ΛΛ′ + Σ i = i′

σ2
gΛΛ′ i 6= i′ and zi = zi′

0 zi 6= zi′

191

where Σ is the K ×K diagonal matrix with diagonal elements (σ2
1, . . . , σ

2
K). The expression of the192

covariance of θi illustrates that the product ΛΛ′ but not the individual elements of Λ are identified;193

we therefore use the posterior of ΛΛ′ to summarize the posterior of the covariance structure. We194

suppose the variance terms of the model follow independent inverse gamma priors with shape u0 and195

scale v0. The most important tuning parameters are the inclusion probability, c, and the number196

of latent factors, L. We set c = 0.5 so that each hypothesis has the same prior probability which is197

reasonable in our studies with a small number of fixed effects. The number of latent factors, L, is198

set to the minimum of the number of samples and the number of taxa (i.e., the maximum number199

of identifiable factors) and allows the Dirichlet-Laplace shrinkage prior to eliminate unnecessary200

factors.201

Posterior sampling is conducted using Markov chain Monte Carlo (MCMC). Most terms in this202

model formulation are conjugate and are updated via Gibbs sampling. One exception is θi which203

we update with Hamiltonian Monte Carlo (HMC) (Neal et al., 2011). The details of these sampling204

schemes are found in the Online Supplement. Code to perform MCMC is written in Julia (Bezanson205

et al., 2017) and available online at https://www.github.com/nsgrantham/mimix.206

4 Simulation Study207

We test our model on a simulated experiment with K = 100 taxa, p = 1 fixed effect, one blocking208

factor that takes q = 5 levels, and n = 40 observations with 8 assigned to each block. Within each209

block exists a balanced experiment with two levels of a single experimental factor, where xi = 1210
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if observation i receives one level of the experimental factor, and xi = 0 otherwise, and zi = r if211

observation i belongs to block r.212

The fixed treatment effect, β, is a sparse K-vector with a varying percentage of non-zero ele-213

ments: 0% dense (β = 0, i.e., no signal), 10% dense, or 20% dense. To generate β that is 10%214

dense, we partition the taxa into 20 clusters of 5 taxa each, select two of the twenty groups at215

random, and within each group draw a value from v ∼ Unif ([−3,−1) ∪ (1, 3]) to signify the group’s216

collective response to the fixed treatment. That is, βk = v if taxon k belongs to the selected group217

and βk = 0 otherwise. For 20% dense, we do this for four total groups. These groups are designed218

to represent taxa with shared phylogenetic ancestry or taxa that react similarly to the fixed effect.219

In the Online Supplement, we also investigate a scenario in which OTUs respond to the treatment220

individually, instead of in groups.221

For the random blocking effects, we draw γr
iid∼ NK(0,Σγ) with autoregressive covariance222

(Σγ)kk′ = σ2
γρ
|k−k′|
γ , ργ = 0.9. Block-to-block variability, σ2

γ , is set at 1 (medium) or 4 (high).223

For each observation i, define θi = µ+βxi+γzi + εi, where µ is a vector of length K with equally-224

spaced steps from 1 to -1 and εi
iid∼ NK(0,Σε) with autoregressive covariance (Σε)kk′ = σ2

ε ρ
|k−k′|
ε .225

We fix ρε = 0.9 and examine sample-to-sample variability, σ2
ε , over 1 (medium), 4 (high), and 9 (very226

high). Finally, we arrive at the final data by drawing each vector of counts Yi from a multinomial227

distribution with total counts mi chosen at-random from 2, 500 to 5, 000 and taxa proportions φi228

calculated according to (1). We do not generate data directly from the MIMIX model to test for ro-229

bustness to model assumptions (e.g., fixed and random effect correlation); data generated assuming230

a low-dimensional dependence structure would unduly favor MIMIX over the competitors.231

In total, we examine each of 18 factor combinations (0, 10, and 20 % dense, medium/high block232

variance, medium/high/very high error variance) with 50 replications and compare the performance233

of three competing microbiome data analysis methods:234

1. PERMANOVA: Permutational multivariate analysis of variance (McArdle and Anderson,235

2001), or PERMANOVA, with Bray-Curtis dissimilarity (BC), a common analysis procedure236
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in ecology. This method tests the null hypothesis that there is no difference between the237

centroids of the treatment and control groups in BC space, but is unequipped to perform238

parameter estimation. It is implemented by adonis in the R package vegan 2.3-5 R, among239

other available software options.240

2. MIMIX: Our Bayesian mixed-effects model as presented in Section 3 with L = 40 factors.241

10,000 posterior samples are collected with 5,000 removed for burn-in.242

3. MIMIX w/o Factors: Bayesian mixed-effects model with no factors. This formulation243

mimics the available mixed model approaches to microbiome data analysis that do not account244

for dependence patterns among taxa, i.e., Λ = IK and ei = 0 for all i = 1, . . . , n. 10,000245

posterior samples are collected with 5,000 removed for burn-in.246

Additional simulation results are given in the Online Supplement.247

The methods are first evaluated on their power/type I error of a global test for treatment effect248

where PERMANOVA rejects for p-value < 0.05 and MIMIX and MIMIX w/o Factors reject if249

Pr(β 6= 0 | Y) > 0.9. We reject if Pr(β 6= 0 | Y) > 0.9 to construct a test that has roughly the250

same size as the PERMANOVA test. Adopting this rule, both MIMIX and MIMIX w/o Factors251

regularly outperform PERMANOVA in detecting the presence of a significant signal (Figure 2).252

In situations with medium error variance, MIMIX and MIMIX w/o Factors achieve similar power253

regardless of the block variance. As error variance increases, MIMIX is more likely than MIMIX254

w/o Factors to correctly identify the presence of a significant treatment effect.255

We further compare MIMIX and MIMIX w/o Factors on their local tests and estimation of256

treatment effects for each OTU. Several metrics are considered: root mean squared error, RMSE =257 √
1
K

∑K
k=1(β̂mean

k − βk)2 where β̂mean
k is the posterior mean of βk, coverage of 95% credible intervals,258

C95 = 1
K

∑K
k=1 I(β̂0.025

k < βk < β̂0.975
k ) where β̂qk is the posterior qth quantile of βk, and the true259

positive rate (TPR) and true negative rate (TNR) of local tests that reject if the 95% credible260

interval for βk excludes zero. Table 1 gives the values of these metrics averaged over 50 replications261

at each factor combination.262
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Figure 2: Results of a global test for treatment effect by MIMIX, MIMIX w/o Factors, and PER-
MANOVA, under a variety of simulation conditions. When β = 0 (0% Dense) the line gives the
test’s type I error. For β 6= 0 (>0% Dense), the line values depict the statistical power of each test.

When there is no signal present in the fixed effects (i.e., β = 0, or 0% dense), MIMIX w/o263

Factors achieves lower RMSE on average than MIMIX in estimating all treatment effects to be zero,264

and both methods yield credible intervals that nearly always correctly include zero. In practice,265

these estimates are inconsequential if the global test appropriately fails to identify a significant266

treatment effect. When a proportion of OTUs are affected by the treatment (10% dense and 20%267

dense), MIMIX regularly outperforms MIMIX w/o Factors in the detection and estimation of these268

non-zero fixed effects. Specifically, when error variance is medium, the TPR of MIMIX is very high269

(85.7% to 94.0%) and beats MIMIX w/o Factors (68.6% to 79.5%), whereas the RMSE of the two270

methods are comparable. For high error variance, the TPR drops to about 50% (MIMIX) and 20%271

(MIMIX w/o Factors), with higher RMSE achieved by both methods, as expected, but lower RMSE272

obtained by MIMIX on average. This trend continues with very high error variance, resulting in273
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Table 1: Local test and estimation performance for MIMIX and MIMIX w/o Factors under a variety
of simulation conditions as measured by root mean squared error (RMSE), coverage of 95% credible
intervals (C95), true positive rate (TPR), and true negative rate (TNR). All values are multiplied
by 100.

Medium block variance High block variance

Dense Error var. Method RMSE C95 TPR TNR RMSE C95 TPR TNR

0% Medium MIMIX 0.3 100.0 100.0 0.6 99.6 99.6
w/o Factors 0.0 100.0 100.0 0.1 100.0 100.0

High MIMIX 0.9 100.0 100.0 1.9 99.9 99.9
w/o Factors 0.1 100.0 100.0 0.5 100.0 100.0

Very High MIMIX 2.0 100.0 100.0 3.3 99.9 99.9
w/o Factors 0.2 100.0 100.0 0.5 100.0 100.0

10% Medium MIMIX 2.2 98.8 92.0 99.8 3.7 98.3 86.8 99.6
w/o Factors 2.8 98.6 76.4 100.0 3.9 98.7 68.6 100.0

High MIMIX 10.3 97.3 53.6 99.6 14.4 96.1 42.6 99.4
w/o Factors 14.6 96.5 24.8 100.0 17.9 96.0 18.6 100.0

Very High MIMIX 23.6 95.5 22.2 99.8 27.4 95.0 14.0 99.7
w/o Factors 28.9 93.9 6.2 100.0 31.7 93.5 2.2 100.0

20% Medium MIMIX 3.9 98.0 94.0 99.4 6.3 96.7 85.7 99.0
w/o Factors 3.6 98.7 79.5 100.0 6.0 98.0 70.7 100.0

High MIMIX 16.2 95.6 58.9 99.4 20.3 94.5 54.6 99.3
w/o Factors 21.1 95.3 30.1 100.0 26.8 94.5 22.8 100.0

Very High MIMIX 36.1 93.0 26.7 99.5 41.7 91.7 18.7 99.6
w/o Factors 50.5 90.0 6.3 100.0 56.9 88.8 3.4 100.0

lower TPR at around 20% and 5% respectively, and greater difference in RMSE in favor of MIMIX.274

Both methods are strongly conservative, achieving TNRs that are overwhelmingly 100%, and their275

C95 is often greater than the expected 95%, except in extreme variance situations (very high error276

variance, high block variance) with 20% dense fixed effects.277

From the global and local simulation results, we draw three broad conclusions about the per-278

formance of MIMIX, MIMIX w/o Factors, and PERMANOVA for microbiome data analysis in279

designed experiments. First, at a global level, MIMIX and MIMIX w/o Factors achieve far greater280

power and comparable type I error (about 0.05) to PERMANOVA. Moreover, the global tests for all281

three methods appear more adversely affected by higher overdispersion in taxa counts than higher282

variability introduced by blocking factors in the experimental design. Second, at the local level,283

MIMIX is better suited for both the detection and estimation of sparse treatment effects compared284

to MIMIX w/o Factors. In this case, MIMIX w/o Factors achieves lower TPR and higher RMSE285

on average because it does not account for correlation patterns among taxa. Finally, TNR and C95286
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are very high and relatively consistent between the two methods under all simulation conditions,287

suggesting MIMIX and MIMIX w/o Factors are conservative in detecting significant OTU-specific288

fixed effects.289

5 Analysis of the NutNet Experiment290

We first compare the performance of MIMIX and MIMIX w/o Factors on the NutNet data through291

five-fold cross-validation, setting the maximum number of latent factors (L) for MIMIX equal to292

the number of samples (166). Specifically, for each Yi with total counts mi we construct Ytestf
i ,293

f = 1, . . . , 5 by assigning each of mi observations to one of the five folds at random and let Ytrainf
i =294 ∑

g 6=f Ytestg
i . For each fold f = 1, . . . , 5, we fit both models to training data f , drawing 20,000295

posterior samples and discarding the first 10,000 for burn-in. Next, we examine the difference of296

their log-likelihoods (MIMIX minus MIMIX w/o Factors) evaluated on testing data f where the297

multinomial probability vector is estimated by the normalized posterior mean vector of occurrence298

probabilities φ̂i. Over all five folds, 69% of differences are positive on average, favoring MIMIX.299

Thus, MIMIX appears to be a more apt model for these data than MIMIX w/o Factors.300

To assess whether MIMIX adequately captures the sparsity in the data, we fit a preliminary301

model to the data and perform posterior predictive checks (Gelman et al., 2014). These checks302

examine the proportion of OTUs within each sample with zero counts (sparsity). This is done by303

predicting new Y1, . . . ,Yn from every posterior sample and comparing the sparsity and overdisper-304

sion in these predicted samples with the observed data. With respect to sparsity, we also consider305

the proportion of OTUs within each sample with two or fewer counts, as these singletons and dou-306

bletons are thought by biologists to be generated by errors in the sequencing process. Figure 3307

depicts posterior predictive checks on sparsity of MIMIX after 20,000 posterior samples with the first308

10,000 removed for burn-in. MIMIX does not accurately estimate the proportion of OTUs within309

each sample with exactly zero counts, but when singleton and doubleton counts are further consid-310

ered the model recovers the observed near-sparsity of the original data. The distinction between zero311

15



counts and two or fewer counts is likely of little consequence. Additional posterior predictive checks312

on the maximum proportion of total counts within a sample from a single OTU (overdispersion)313

and the average Bray-Curtis similarity between samples from the same site, block, and treatment314

group also suggest that the marginal and joint distributions of OTU counts are captured faithfully315

by the MIMIX fit (results in the Online Supplemental).316

We now use MIMIX to characterize the effects of the nutrient-supplement and herbivore-exclusion317

treatments on the fungal foliar microbiome of A. gerardii. For the purposes of comparison, we also318

present analyses from Bray-Curtis PERMANOVA, which represents the current state-of-the-art in319

ecological analysis, and MIMIX w/o Factors. We present MIMIX w/o Factors to illustrate the con-320

sequences of using factor analysis to account for dependence patterns among taxa in the microbiome,321

but we emphasize that our simulation studies and preliminary analysis point towards MIMIX as322

the most trustworthy analysis. For the Bayesian models, we collect 20,000 posterior samples and323

discard the first 10,000 for burn-in.324

Figure 3: Posterior predictive checks on sparsity for MIMIX applied to the NutNet data. For each
sample, the dot indicates the proportion of OTUs in the sample with 0 (left) or ≤ 2 (right) reads.
The vertical line is the 95% posterior predictive distribution, shaded black if the interval excludes
the observed value and gray otherwise.
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First, we conduct a global test of whether the experimental treatments affect the overall com-325

position of the microbiome. No method identifies a significant interaction effect between the two326

treatments, with PERMANOVA p = 0.120, MIMIX posterior probability 0.236, and MIMIX w/o327

Factors posterior probability 0.413. However, PERMANOVA and MIMIX find strong evidence that328

the fungal microbiome composition is affected by nutrient supplement, with p = 0.003 and posterior329

probability 1.0, respectively, while MIMIX w/o Factors does not, with posterior probability 0.757.330

No method detects an effect of herbivore exclusion, with PERMANOVA p = 0.787, MIMIX poste-331

rior probability 0.196, and MIMIX w/o Factors posterior probability 0.523. These results suggest332

that the composition of the foliar fungal microbiome of A. gerardii is impacted by the resources333

available to the plant host.334

We next use MIMIX to estimate the effects of nutrient supplement on individual fungal OTUs.335

Because the OTU assignments for this particular data set are only preliminary, we focus here on the336

distribution of OTU-level effects, and reserve the characterization of effects on specific OTUs for337

later work. The fixed effect for nutrient supplement estimated by MIMIX has 95% credible intervals338

that exclude zero for 73 OTUs (Figure 4). Thus, while this analysis finds overwhelming evidence339

that environmental nutrient supply alters the composition of these microbiomes, this effect appears340

to be driven by only a few constituent microbes. Moreover, it appears accounting for correlation341

among OTUs is essential to detecting these individual microbes. In the Online Supplement, we show342

that estimates of OTU-level treatment effects are robust to the choice of variance hyperparameters343

c0 and d0.344
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(a) All OTUs (b) Only affected OTUs

Figure 4: Posterior 95% credible intervals for the effect of nutrient supplement on each OTU.
Across all OTUs (a), most are not significantly affected by the treatment (gray lines), but MIMIX
identifies 73 of 2,662 OTUs (2.7%) that show a significant response (black lines). Among these
affected OTUs (b), the taxonomy of each fungal OTU is given up to species, if known, or at a
higher taxonomic rank, such as genus or order, with trailing numbers identifying distinct strains.
The OTUs are ordered along the y-axis according to complete linkage hierarchical clustering of the
estimated factor correlation matrix from MIMIX.

18



Figure 5: The proportion of variance for each OTU that is explained by the contribution of site and
block vs. unexplained residual variation. Black dots correspond to OTUs identified by MIMIX as
being significantly affected by nutrient supplement in Figure 4b, though only a subset of names are
displayed to avoid overlapping labels.

MIMIX quantifies the relative contribution of different sources of residual variation to fungal345

composition. Site- and block-level variances are estimated with posterior means σ̂2
Site = 3.279 and346

σ̂2
Block = 0.296. Posterior means of OTU-specific variances not attributed to the study design347

(σ̂2
1, . . . , σ̂

2
K) are strongly skewed, ranging from 0.032 to 28.63 with mean 5.817 (Figure 5). The348

proportion of residual variance in OTU k that is captured by site- and block-level effects is estimated349

by350

η̂k = 1−
σ̂2
k

σ̂2
k + (1 + σ̂2

Site + σ̂2
Block)

∑L
l=1 λ̂

2
lk

,351

where λ̂lk is the posterior mean of λlk. Figure 5 shows η̂k vs. σ̂2
k for each OTU.352

Two loose groups of points emerge, one in which residual variation is almost entirely explained by353

site and block variation (η̂k > 0.4), and another in which these random effects explain a relatively354

small amount of residual variation in OTUs (η̂k < 0.4). OTUs identified by MIMIX as being355
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significantly affected by nutrient supplement, indicated by black dots in Figure 5, appear to be356

strongly represented in the former of these two groups, although there are a few OTUs that are357

significantly affected by nutrient supplement that do not appear to be greatly influenced by site and358

block effects. Overall, site and block effects explain over half the residual variation (η̂k > 0.5) for359

Figure 6: Estimated factor correlation matrix among OTUs, with OTUs ordered by hierarchical
clustering. Clusters of strongly correlated OTUs, represented by purple triangles along the diagonal,
indicate small communities that respond similarly to the fixed and random effects of the designed
experiment. The OTUs highlighted along the diagonal are those identified by MIMIX as being
significantly affected by nutrient supplement in Figure 4b, though only a subset of names are
displayed to avoid overlapping labels.
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approximately 16% of OTUs.360

Finally, we take a closer look at the estimated factor correlation matrix ΛΛ′ using the posterior361

mean of Λ (Figure 6). MIMIX identifies a large number of potential clusters of fungal OTUs362

(grouped along the diagonal of Figure 6), with myriad positive and negative correlations among363

them. These clusters may indicate latent ecological subcommunities, or they may reflect collections364

of taxa that occupy similar ecological niches. MIMIX w/o Factors does not adequately account for365

these relationships among OTUs, which explains its poorer fit to the data.366

6 Discussion367

In this paper, we introduce MIMIX (MIcrobiome MIXed effects), a Bayesian mixed-effects model368

to analyze microbiome data as a response variable in designed experiments. MIMIX has several369

attractive features for the analyis of high-dimensional, sparse, microbiome count data. It performs370

spike-and-slab variable selection to identify treatment effects on individual Operational Taxonomic371

Units (OTUs). Moreover, its Bayesian factor analysis formulation with a continuous shrinkage372

Dirichlet-Laplace prior clusters OTUs into different factors based on how they respond to the fixed373

and random effects in the experiment. This allows for post-hoc analysis of the model to identify be-374

haviorally similar clusters of OTUs within the larger microbiome community. In a simulation study,375

these features allow MIMIX to outperform both PERMANOVA with Bray-Curtis dissimilarity and376

MIMIX that does not include Bayesian factors (MIMIX w/o Factors) in identifying and estimating377

sparse treatment effects.378

We demonstrate MIMIX on experimental data from four sites within the Nutrient Network379

cooperative to quantify the effects of nutrient supplement and herbivore exclusion on the fungal380

microbiome of the grass species Andropogon gerardii. We identify a significant effect of nutrient381

supplement (but not herbivore exclusion) on these microbiomes, while accounting for random effects382

due to both site and blocks within site. We also identify a significant treatment effect of nutrient383

supplement on about 2.7% of OTUs. Although the OTU assignments in this particular data set384
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are preliminary, our results illustrate how MIMIX enables OTU-level inferences that may allow385

for deeper and sharper understanding of how environmental conditions impact the abundance of386

specific taxa in a microbiome.387

Ecologically, this analysis of the Nutrient Network data suggests the following insights. First,388

ecologists are frequently interested in how resource supply and grazing combine to influence the389

structure of ecological communities (the so-called “bottom-up” vs. “top-down” dichotomy). The390

results of this experiment suggest that resource supply, or “bottom-up” factors, play a larger role in391

structuring a host’s microbiome than predation. Second, the paucity of large OTU-specific responses392

(Figure 4) suggests that only a handful of microbial taxa respond to the nutrient supplementation,393

and that these responses can be sufficient to reshape the microbiome when considered as an ecological394

whole. Third, the residual variation of some, though not all OTUs can be explained by site- and395

block-level random effects (Figure 5), suggesting that these OTUs may either be strongly influenced396

by regional environmental correlates, or may be limited by reduced dispersal at regional (km) scales.397

Finally, the estimated factor correlation matrix (Figure 6) suggests that this foliar microbiome is398

composed of many modestly sized clusters of similarly behaving OTUs. This pattern may either399

suggest many moderately sized subcommunities, aggregation of taxa into many separate ecological400

niches, or both.401

The initial results from MIMIX are encouraging, but its features will need to scale as microbiome402

experiments grow in complexity. For example, MIMIX is not currently suited for handling data403

from longitudinal studies with repeated measures over time. Furthermore, while the dimensionality404

of the microbiome data analyzed here is quite high at K ≈ 2, 500, the dimensionality can grow405

rapidly, especially when multiple domains of life (bacteria, archaea, fungi, etc.) are studied. In406

such instances, computation time and memory management will become a more pressing concern407

which may require a reconstruction of the posterior sampling scheme. We set the number of latent408

factors to be the maximum number of identifiable factors and allow the Bayesian shrinkage prior409

to eliminate excess factors. Another approach that may be more suitable for massive datasets is to410

use a smaller number of latent factors with Gaussian priors on the factor matrix. This approach is411
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easier to explain and implement, and faster for a given number of factors. However, this approach412

would likely require expensive cross-validation to pick the number of factors and would not account413

for uncertainty in the number of factors.414
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