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Abstract. Global climate change is causing shifts in phenology across multiple species. We
use a geographically and temporally extensive data set of butterfly abundance across the state
of Ohio to ask whether phenological change can be predicted from climatological data. Our
focus is on growing degree days (GDD), a commonly used measure of thermal accumulation,
as the mechanistic link between climate change and species phenology. We used simple
calculations of median absolute error associated with GDD and an alternative predictor of
phenology, ordinal date, for both first emergence and peak abundance of 13 butterfly species.
We show that GDD acts as a better predictor than date for first emergence in nearly all
species, and for peak abundance in more than half of all species, especially univoltine species.
Species with less ecological flexibility, in particular those with greater dietary specialization,
had greater predictability with GDD. The new method we develop for predicting phenology
using GDD offers a simple yet effective way to predict species’ responses to climate change.

Key words: climate change; first emergence; growing degree days; Lepidoptera; Ohio, USA; ordinal
date; peak abundance; phenology; temperature.

INTRODUCTION

Global climate change is causing shifts in phenology,

or the timing of life cycle events, across plants and

animals (Root et al. 2003, Parmesan 2006). There are

many examples of advanced timing, such as egg-laying

in birds (Møller et al. 2010) and emergence in butterflies

(Forister and Shapiro 2003). Given that these pheno-

logical shifts are occurring, an important step is to

determine how predictable these shifts are. As yet, there

is no simple and reliable approach to predict phenolog-

ical shifts across multiple species (Visser and Both 2005)

and biogeographic regions. In this paper, we use a long-

term, geographically extensive data set of butterfly

abundance across the U.S. state of Ohio to ask whether

phenological change can be predicted across species

using models of thermal accumulation.

One of the many species’ traits (Altermatt 2010,

Diamond et al. 2011) and climate variables (Laws and

Belovsky 2010) that have been used to link climate

change to phenological shifts is thermal tolerance for

development, which can be measured with growing

degree days (GDD). GDD is a time-based integral of

heat accumulation, measured annually by accumulating

the daily total of degrees (8C) that occur between

minimum and maximum temperature thresholds (Dmin

and Dmax). GDD has a long history of use in predicting

plant and insect phenology in agriculture (Parry and

Carter 1985, Bonhomme 2000), and temperature has

been shown to be a major driver of phenology (Miller-

Rushing et al. 2010, Diamond et al. 2014). Only more

recently have ecologists adopted GDD as a link between

changes in climate and phenology (Nufio et al. 2010,

Hodgson et al. 2011).

GDD should be a strong, integrative measure of

climate change because it can account for both spatial

and temporal variation in temperature, and it explicitly

constrains the thermal limits within which growth is

possible. Models that forecast the impacts of future

climate change can incorporate GDD as a localized,

specific variable directly related to organismal develop-

ment. As global temperatures rise, GDD will accumu-

late faster and with more interannual variation than

ordinal date. However, these two measurements will

always remain correlated to some extent, and other

abiotic factors that may influence phenology, such as

precipitation, might be better predicted by date than by

GDD. Therefore, a test is needed to determine when and

for which species GDD can more accurately predict

species’ responses in place of date, or whether date alone

can act as a good predictor of phenology.

In this study, we are able to distinguish the abilities of

GDD and date to predict phenology in an unusually

large data set on butterfly species abundance across 120

sites in Ohio for 17 years, where we observe high levels

of both interannual and latitudinal variation in GDD

(Fig. 1). This analysis joins a growing body of work

using butterfly monitoring programs that uniquely

benefits from having a long time series of data (Roy
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and Sparks 2000, Forister and Shapiro 2003, Stefanescu

et al. 2003). With these data, we asked whether GDD or

date better predicted phenology in terms of first

emergence and peak abundance for 13 common

butterfly species across the state. We define predictabil-

ity as the ability to predict date of emergence or date of

peak abundance with the least amount of error from

year to year as measured in days. We then quantitatively

measure the forecasting accuracy of GDD compared to

date. With this method, we have highlighted a simple yet

powerful approach that can be used to predict how

species may respond to future climate change.

METHODS

Butterfly data collection

We obtained survey data on butterfly abundances

across the state of Ohio that were collected between 1996

and 2012 by the Ohio Lepidopterists. Surveys typically

run from early April until late October and are

conducted by volunteers at approximately one-week

intervals. Survey protocols are based on those developed

by Pollard (Pollard 1977) and are similar to other

butterfly monitoring programs in North America and

Europe. At each survey point, one observer walks a fixed

transect and records all butterfly species seen and their

abundances within approximately 5 m of the transect.

Survey lengths vary between sites, although they are

always consistent within a site each year.

To conduct our analysis, we chose 13 species that were

among the most common resident species within Ohio,

and whose emergence occurred late enough to be

captured within the time frame of most surveys: pearl

crescent (Phyciodes tharos), great spangled fritillary

(Speyeria cybele), silver-spotted skipper (Epargyreus

clarus), little wood satyr (Megisto cymela), common

wood nymph (Cercyonis pegala), orange sulphur (Colias

eurytheme), eastern-tailed blue (Cupido comyntas), least

skipper (Ancyloxypha numitor), European skipper (Thy-

melicus lineola), spicebush swallowtail (Papilio troilus),

Peck’s skipper (Polites peckius), viceroy (Limenitis

archippus), and hackberry emperor (Asterocampa celtis).

We classified these species according to four species

traits: larval host-plant category (legume, grass, forb, or

woody), larval host-plant diversity (the number of

different plant species used), over-wintering stage (egg,

larvae, or pupae) and voltinism (univoltine, bivoltine, or

multivoltine) (Scott 1986, Daniels 2004). We focus on

these four traits in particular, as they have been

suggested as central traits that may influence the ability

of butterflies to respond to climate change (Dennis 1993,

Diamond et al. 2011, 2014).

We used the portion of the data set that met the

following criteria, and for which we had sufficient

repeated observations to estimate emergence and peak

abundance. For each combination of site, species, and

year, we used emergence data in the analysis if (1) at

least five individuals were seen at the site; (2) there was

at least one survey record of absence before the

emergence date; (3) the species was seen on more than

one survey date; and (4) there was at least one survey

date within 14 days prior to the emergence date. We

used date of first observation as a proxy for emergence

date. Because there were so few occurrences prior to 1

April, we did not use emergence dates that occurred

before then. For multivoltine species, we analyzed

emergence date of the first flight period only. With an

average interval of 8 days between surveys, we did not

expect to detect exact emergence date, but rather obtain

a reasonable estimate of emergence given the challenges

of collecting large-scale data with volunteers.

We also analyzed date of peak abundance as a

complement to emergence date. Peak abundance is

generally less sensitive to variation in sampling size and

imperfect detectability (Moussus et al. 2010). To

calculate peak abundance, we fit curves of butterfly

abundance over time using nonlinear least squares

(based on a standard three-parameter Gaussian func-

tion, y¼ a 3 exp(�1/2 3 ((x� b)/c)2) for each species at

each site within each year. Ordinal dates of peak

abundance were estimated as the dates of the maximal

abundance values from the nonlinear regression models

(parameter b above [a represents the amplitude of the

FIG. 1. Total accumulated growing degree days (GDD) for
(a) each of 17 years averaged across all sites and (b) each of 120
sites averaged across all years, ordered by latitude from south
to north.
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curve, and c represents the width of the curve]). For

multivoltine species, we estimated peak abundance of

the first flight period only. There were not enough data

for L. archippus to calculate peak abundance of the first

flight period, so we used peak abundance of the second

flight period. Descriptive statistics of butterfly phenol-

ogy (peak abundance estimated as the mean and median

ordinal date, both unweighted and weighted by abun-

dance, not presented) yielded qualitatively similar results

as estimates of phenology from the nonlinear regression

models. Here, we focus on the nonlinear regression

estimates to limit potential sensitivity to extreme values.

There has been some criticism of focusing on

emergence timing as opposed to date of peak abundance

in that it can generate bias relating to changes in

sampling effort or population abundance over time

(Von Strien et al. 2008, Ellwood et al. 2012). We have

minimized potential bias in missing early emergence

dates or emergence in small populations by eliminating

the earliest emerging species, and by creating a threshold

of species appearance at each site below which we avoid

using data. In addition, our focus is on the relative

predictive ability of GDD vs. date rather than estimat-

ing their individual effects. Because both GDD and date

are derived from the same data set, these indices will be

subject to the same estimation biases, such that

assessment of their relative predictive ability will not

be influenced.

Climate data

To calculate GDD, we used the Daymet daily surface

weather and climatological summaries produced by Oak

Ridge National Laboratory (data available online).7 We

extracted the temperature values from the Daymet grid

pixel measuring 13 1 km that contained each of the site

points, for each day and year of the study duration.

These temperatures were used to perform the daily

GDD time series calculation, which used the single-sine

growing degree day method with a fixed spacing of 12

hours between daily minimum and maximum tempera-

tures (Baskerville and Emin 1969, Roltsch et al. 1999).

We started accumulating GDD on 1 January each year,

so that each emergence date and peak date was

associated with a site- and year-specific GDD value.

We used a minimum threshold of 108C and a

maximum of 308C to calculate GDD. These thresholds

were first developed in agriculture and correspond to

generally accepted thermal thresholds for several eco-

nomically important crops (Dethier and Vittum 1967)

and other insects (Nufio et al. 2010). To our knowledge,

there are only two butterfly species in North America for

which thermal tolerance limits for development have

been specifically calculated. Monarchs (Danaus plexip-

pus) are known to have a minimum threshold (Dmin) of

11.58C and a maximum threshold (Dmax) of 338C

(Zalucki 1982), although, as a migrant species of tropical

origin, this is likely a warmer range than might be seen

for resident species in temperate Ohio, especially for the

lower thermal limit (Sunday et al. 2011). A warm-

adapted species, the sachem skipper (Atalopedes cam-

pestris), is known to have a Dmin of 15.58C but no

measured Dmax, and is an uncommon stray to Ohio

(Crozier and Dwyer 2006). In the absence of known

species-specific thresholds, and given that butterfly

development is generally tied to seasonal variation in

host-plant growth, we feel it is reasonable to use general

agricultural thresholds, especially given that these

roughly correspond to the only other known thresholds.

Analysis

We identified the date of emergence and peak

abundance for all species at each site-year combination

and calculated the GDD for these dates. For each

species, at each site with at least three years of observed

values, we excluded each year in turn and calculated the

median date and median GDD of emergence and peak

abundance from the remaining values. As a result, each

observed value had a unique median value associated

with it. We then recorded the absolute difference

between each observed value and median value, which

we considered to be the amount of error associated with

that variable. Median values for GDD were converted

back to a date specific to each site and year, so that we

were able to calculate the difference between median

value and observed value of GDD on the same scale as

ordinal date. Finally, for each site–year combination, we

tallied whether date or GDD did better (i.e., had less

error). To determine whether the number of site-year

combinations with less error associated with GDD

compared to date was significantly different for each

species, we performed a chi-squared test (df ¼ 1).

We also conducted a time series analysis to determine

the forecasting ability of GDD and ordinal date on

emergence and peak abundance. We excluded the final

year of observation from each site for each species and

used an autoregressive integrated moving average

(ARIMA) model to predict the GDD or date of

emergence and peak abundance. By generating a

prediction of emergence and peak abundance for the

last year for which we have data and comparing the

amount of error associated with it for both GDD and

date, we specifically address the temporal variation in

the data and outline a practical method for predicting

phenology (see Appendix A for details).

We also performed model selection analysis to

examine the influence of butterfly species’ traits (larval

host-plant class, larval host-plant diversity, overwinter-

ing stage, and voltinism) on the predictability of

emergence and peak abundance based on GDD. Higher

values of predictability indicate GDD was a better

predictor of emergence or peak abundance compared

with ordinal date. We used AICc (AIC corrected for

small sample size) to identify a subset of best-fitting7 http://daymet.ornl.gov/overview.html
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models for each of the two responses (see Appendix B

for details).

All analyses were performed using program R (R

Development Core Team 2015).

RESULTS

The data set included 16 444 surveys conducted over

17 years among 120 sites. From this data set, we

included 3918 dates of first emergence, with an average

of 301 dates used per species (average 18 per year per

species). We included 2319 peak abundance dates, with

an average of 178 dates used per species (average 10 per

year per species).

Total accumulated annual GDD averaged among all

sites ranged from 1271 (SD ¼ 127) to 1729 (SD ¼ 150;

Fig. 1a). Total accumulated GDD averaged among all

years at each site ranged from 1247 (SD¼ 120) to 1899

(SD ¼ 147; Fig. 1b).

GDD outperformed date and more accurately pre-

dicted emergence in 13 of 14 species (Table 1, Fig. 2a).

The difference between the numbers of site-year

observations where GDD performed better compared

to date was significant for M. cymela, C. eurytheme, P.

tharos, S. cybele, C. pegala, P. troilus, and T. lineola (P

� 0.05) and marginally significant for A. numitor (0.05 ,

P � 0.10 ). GDD performed equally well as date for the

one species, L. archippus.

GDD outperformed date in predicting peak abun-

dance in 7 of 13 species (Table 1, Fig. 2b). GDD was

significantly better than date for S. cybele, T. lineola,

and P. troilus, while date was significantly better than

GDD for L. archippus, C. eurytheme, and C. comyntas.

In addition, GDD was marginally significantly better

than date for M. cymela and A. celtis, while date was

marginally significantly better for P. tharos.

Site–year combinations where GDD and date had

equal error were present for almost all species, but

constituted a small proportion of all site–year combina-

tions tested (Table 1). The highest rate of combinations

where GDD and date had equal amount of error was

seen with T. lineola for emergence (14 out of 189, 7%)

and with A. celtis for peak abundance (4 out of 44, 9%).

In the time series analysis, we used 3405 emergence

dates to predict future emergence across 81 sites, and we

used 1941 peak dates to predict future peak abundance

across 76 sites. GDD did better than date at predicting

emergence for all but three species, and GDD did better

than date at predicting peak abundance for six species.

Predictability of peak abundance varied with voltinism

(see Appendix A for details).

We found larval host-plant diversity to be the strongest

predictor for predictability of emergence and peak

abundance from GDD. Voltinism was the next strongest

factor for predictability of emergence, and overwintering

stage was the next strongest factor for predictability of

peak abundance (see Appendix B for details).

DISCUSSION

We show that growing degree days (GDD), a variable

that provides a mechanistic link between thermal

accumulation and organismal performance, improved

predictions of phenological responses to interannual

variation in temperature for several species. For

common butterfly species found across the state of

Ohio, GDD was as good as or better a predictor of first

emergence than date for all species, and also a better

predictor of peak abundance for over half of the species

we examined. Specifically, we found that GDD exhibits

lower error based on predicted values compared with

ordinal date, which lacks an explicit mechanistic basis.

In our development of a new approach to test GDD

against other reasonable predictors, we provide results

that support the use of GDD in predicting ecological

TABLE 1. Number of site-year observations for 13 butterfly species for which growing degree days (GDD) or date had less error, or
for which they were equal, when compared to a median value based on all other years at the site.

Species

First emergence Peak abundance

No. sites
with less error

No. sites
with equal error P

No. sites
with less error

No. sites
with equal error PDate GDD Date GDD

Megisto cymela 148 256 21 ,0.001 114 144 14 0.062
Colias eurytheme 189 245 16 0.007 161 122 7 0.02
Epargyreus clarus 197 230 19 0.11 181 161 6 0.279
Phycoides tharos 154 212 24 0.002 101 77 16 0.072
Speyeria cybele 148 205 19 0.002 111 145 10 0.034
Cupido comyntas 184 203 18 0.334 208 95 14 ,0.001
Cercyonis pegala 134 168 13 0.05 98 113 10 0.302
Ancyloxpha numitor 114 142 16 0.08 39 37 5 0.818
Polites peckius 107 120 18 0.388 29 35 2 0.453
Papilio troilus 72 108 11 0.007 34 54 2 0.033
Thymelicus lineola 73 102 14 0.028 26 58 8 ,0.001
Asterocampa celtis 52 69 7 0.122 14 26 4 0.058
Limenitis archippus 57 57 2 1 23 7 2 0.003

Note: The total number of site-year observations is not equal for emergence and peak abundance within a species because it was
not always possible at every site in every year to calculate both emergence and peak.
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responses to climate change of butterflies, and perhaps

additional ectothermic taxa.

In predicting first emergence, GDD showed less or

equal error at more sites than date for all 13 species. This

strong trend was mirrored in our time series analysis,

with emergence better predicted using GDD compared

to date for 10 species. That this pattern of GDD

outperforming date held across such a varied group of

species indicates its great potential to be applicable to

many species outside the scope of this analysis.

Our results for predictions of peak abundance were

more mixed, but with GDD still outperforming date for

at least half of all species in both analyses. We detected a

clear trend of GDD outperforming date for univoltine

species, while date outperformed GDD for multivoltine

species. However, the fact that several species with

significant differences favored date, and that two species

(C. eurytheme and C. comyntas) showed inconsistent

patterns of predictability between emergence date and

peak abundance, underlies the complexity of using

FIG. 2. Number of site-year observations with less error associated with either GDD or date for (a) emergence and (b) peak
abundance. Error was calculated based on the median of the difference between the observed value in a year and the median value
for all other years at a site. Species are Megisto cymela, Colias eurytheme, Epargyreus clarus, Phycoides tharos, Speyeria cybele,
Cupido comyntas, Cercyonis pegala, Ancyloxpha numitor, Polites peckius, Papilio troilus, Thymelicus lineola, Asterocampa celtis, and
Limenitis archippus.

* P , 0.05; ** P , 0.01; *** P , 0.001
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GDD to predict multiple phenological stages. It is

possible that peak abundance is more difficult to predict

because it is influenced by additional ecological factors

such as predation or disease incidence that can vary

from year to year, in ways that first emergence does not.

As such, GDD remains a promising predictor for peak

abundance for some species, especially univoltine species

where date of peak abundance is likely easier to isolate.

We found larval host-plant diversity to be a strong

predictor of the predictability of both emergence and

peak abundance based on GDD, such that species with

greater dietary specialization had greater predictability

with GDD. Butterfly species with more restricted diets are

more closely tied to their host plants, and therefore it may

be unsurprising that dietary specialists are more sensitive

to the impacts of temperature on this trophic interaction

compared with butterfly species with more flexible diets.

Further, we found that species with fewer annual

generations had greater emergence predictability with

GDD, and species with less mobile overwintering stages

(egg and pupa vs. larva) had greater emergence peak

abundance predictability with GDD. Again, a general

pattern emerged such that species with less ecological

flexibility exhibited greater predictability with GDD.

One inherent source of variation in the data set is that

surveys were not conducted on a daily basis, so that we

could not determine the exact emergence date. Daily

surveys allow for more precise determination of phenol-

ogy, and can lead to a tighter relationship between GDD

and emergence (Kuefler et al. 2008). In addition, with a

data set compiled by so many different observers, there

are likely differences in detection among observers

(MacKenzie et al. 2002). However, any systematic errors

in detection, such as late detection of first emergence due

to insufficiently frequent surveying, would be similar for

both date and GDD. Despite the observer and survey

error inherent in our large and citizen-run data set, we

still detected a signal showing that GDD predicts

phenological change in response to temperature variation

in a number of species, and would anticipate an even

higher signal with more precise measures of phenology.

Spatial variation in emergence dates within species

implies that there is no value of GDD or date intrinsic to

a species, indicating that other abiotic and biotic factors

(e.g., microclimate, individual physiology) do play a role

in species phenology. This variation can have several

different outcomes in terms of species’ responses to

climate change. For example, more thermally sensitive

species are more likely to exhibit phenological shifts

under changing climates (Edwards and Richardson

2004). This could potentially be beneficial if a shift

toward earlier emergence leads to more generations per

year or priority of access to limited resources, but

alternatively could be disastrous if that shift causes a

mismatch with their host plant’s phenology. Our results

indicate that future climate change and associated

increases in the rate of thermal accumulation are likely

to advance emergence dates, potentially most dramati-

cally in dietary specialist species, and could alter flight

period lengths if environmental temperatures exceed
species tolerance limits for development. The incorpo-

ration of abiotic weather variables in future analyses
may further explain the observed variation and highlight

more fine-scale trends in the data.
More work is needed on the link between phenolog-

ical changes in butterflies and their host plants to
understand whether phenological changes occur con-
currently, or whether a mismatch arises between the

emergence of butterflies and the productivity of their
hosts (Miller-Rushing et al. 2010, Singer and Parmesan

2010). As such data continue to accumulate, through
continued efforts in Ohio as well as other programs that

exist in other states, synthesis across studies will be able
to pinpoint how GDD can be used to predict emergence

and peak abundance, and also the consistency of
predictability among sites and years. In addition, there

is considerable interspecific variation in upper, and
particularly lower, lethal and critical thermal limits

(Sunday et al. 2011). In knowing that two butterfly
species (D. plexippus and A. campestris) have disparate

lower thermal limits and (in the case of A. campestris)
unknown upper thermal limits, it is likely that interspe-

cific variation in butterfly thermal limits is the norm.
Given this variability, model predictions of phenology
based on GDD will be even further improved when

incorporating species-specific thermal limits, potentially
across multiple life stages (Briscoe et al. 2012) or with

additional measures of thermal accumulation (ex.
heating degree days). In accumulating larger data sets

and combining these with species-specific thermal limits,
we would be able to tailor GDD models to specific

species, or suites of species with common traits.
In sum, we show that GDD is a good predictor of

butterfly phenology, in particular emergence, supporting
its use in ecological studies. Further, we present a novel

method for predicting butterfly phenology that can be
applied across multiple species, providing a framework

for future, community-wide investigations using GDD
to predict responses to climate change. The benefits of

being able to anticipate phenological shifts are great, as
the consequences of such shifts can potentially include

temporal and/or spatial mismatches between dependent
species (Hegland et al. 2009). The commonplace nature

of the temperature data used to develop GDD models of
phenology makes it a promising tool for future use. For
those species that do respond to GDD, we can now

predict, rather than simply describe, ecological responses
as global temperatures rise.
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